TP: ADC PIC18F45K50

Objectifs :

 Analyser la conversion analogique numérique sur le PIC18F45K50 au travers de sa documentation, puis mettre en œuvre sa programmation par simulation puis en utilisant une carte de développement.

Compétences abordées :

Réaliser	C4.3 : Adapter et/ou configurer une structure logicielle.
	C4.2 : Extraire de la notice technique les informations pertinentes.
	C4.5 : Tester et valider un module logiciel et matériel.

Savoirs abordés :

Savoir	Description
S4.7. Langages de programmation	Circuits programmables (graphique) Utiliser un logiciel de simulation
S5.1. Architecture matérielle du traitement de l'information	Constituants d'un système de traitement de l'information Composants programmables : µC
S5.3. Structures matérielles des E/S	Conversion de données : Échantillonnage, CAN
S9.2 Prototypage rapide avec des outils adaptés	Microcontrôleurs

Moyens :

- Ordinateur disposant des logiciels :

- MPLAB X IDE 5.10 + MCC + Proteus Viewer + XC8 2.0
- Proteus 8

```
- Outil de développement pour microprocesseur PIC : Curiosity HPC + Microcontrôleur PIC18F45K50 + Cordon de liaison.
```

Conditions :

- Travail en binôme.
- Durée : 1H
- Compte rendu remis à la fin de la séance.

Prérequis :

- Notions sur les différents constituants d'un système programmé.
- Conversion analogique \rightarrow numérique.

TP : ADC PIC18F45K50

Vous avez à votre disposition :

- un ordinateur disposant de l'environnement de développement MPLAB X ; et du logiciel Proteus 8.
- une carte de développement Curiosity HPC disposant d'un PIC18F45K50 et d'un cordon USB de liaison.

Tous les documents nécessaires figurent sur le site de la section BTS SN EC

I. Généralités

- 1. Prendre connaissance de la vidéo consultable depuis le site, en parallèle avec la documentation du microcontrôleur.
- 2. De combien d'entrées le convertisseur analogique numérique du PIC18F45K50 peut-il disposer ?

 \rightarrow

3. Les broches d'entrées de ces convertisseurs peuvent-elles être utilisées par d'autres applications ? Si oui, citer 3 exemples

 \rightarrow

- 4. Quelle est la résolution de ce convertisseur $? \rightarrow$
- 5. Sur quel principe repose la conversion analogique numérique sur ce circuit ?

 \rightarrow

- 6. La référence de tension de ce convertisseur peut avoir 3 origines distinctes, sélectionnables par programmation, quelles sont-elles ?
 - \rightarrow
 - \rightarrow
 - \rightarrow
- 7. Quel est l'inconvénient majeur dans l'utilisation de l'alimentation du circuit comme tension de référence ?

 \rightarrow

8. Calculer le pourcentage d'erreur possible sur la tension de référence VFR

 \rightarrow

9. Parmi ces 3 possibilités quelle est la référence la plus précise ?

 \rightarrow

10. Indiquer un avantage et un inconvénient dans l'utilisation d'une référence de tension extérieure

 \rightarrow Avantage :

HORTOLLAND C.

TP : ADC PIC18F45K50

- \rightarrow Inconvénient :
- 11. Pour une tension de référence de 5V calculer est la valeur du quantum.
 - \rightarrow
- 12. Faire des recherches pour indiquer ce que signifie et à quoi sert l'instruction NOP().
 - \rightarrow
- 13. Répondre aux questions de la fin de vidéo.
- 14. Quel est l'intérêt de disposer dans l'IDE d'un mode debug ?
 - \rightarrow
- 15. Mettre en œuvre ce qui a été illustré dans la vidéo : modification du schéma et du projet MPLAB X tout en conservant les versions précédentes.

Faire constater

TP : ADC PIC18F45K50

Document ANNEXE 1

CURIOSITY HPC DEVELOPMENT BOARD SCHEMATIC (1 OF 2)