
 

 

 

 

Bluetooth® Low Energy 

Sensor Tag Hands On 

 

 

 
 

 

 

 

 



  SWRU270C 

 Page 2 of 30 

1. Introduction 

Thank you for purchasing a Texas Instruments (TI) Bluetooth® low energy (BLE) Sensor Tag Development 

Kit. The purpose of this document is to give an overview of the hardware and software included in the kit 

and to provide an introduction into BLE. 

The information in this guide will get you up and running with the kit.  For more detailed information on 

BLE technology and the TI BLE protocol stack, please consult the Texas Instruments Bluetooth® Low 

Energy Software Developer’s Guide.  

1.1 Kit Contents Overview 

The kits contain the following hardware components including cables: 

 CC2541 Sensor Tag CC2540 Dongle Plastic Case 

for Sensor Tag 

Sensor Tag Kit • • • 

 

The CC2541 Sensor Tag is designed to act as a Peripheral Device (BLE Slave). Plastic casing for the sensor 

tag is also included. The sensor tag operates on a single CR2032 coin cell battery and includes a two-

colored LED and the following sensors: temperature, humidity, pressure, accelerometer, gyroscope, and 

magnetometer.  

The sensor tag uses I2C to interface to the different sensors.  It is a FCC, IC, and ETSI certified solution.  An 

overview of the sensor tag is shown below: 

 

The CC2540 USB Dongle can be used to emulate any type of Bluetooth low energy behavior but is usually 

used as a Central Device (BLE Master). It connects to a Windows PC’s USB Port, and is pre-loaded with the 

necessary software to receive commands from the PC tool BTool.  That is, it acts as a network processor 

by default. 

Caution! The kits include a non-rechargeable lithium battery. Always make sure the battery is removed from the CC2540/41 Sensor 

tag when it is connected to an external power source (Do not apply voltage > 3.6V). Dispose the battery properly and keep out of the 

reach of children. If swallowed, contact a physician immediately. 

Caution! The kits contain ESD sensitive components. Handle with care to prevent permanent damage. 



  SWRU270C 

 Page 3 of 30 

1.2 System Requirements 

To use the TI BLE software, a PC running Microsoft Windows (XP or later) is required, as well as Microsoft 

.NET Framework 3.5 Service Pack 1 (SP1) or greater. 

In order to check whether your system has the appropriate .NET Framework, open up the Windows 

Control Panel, and select “Add or Remove Programs”. Amongst the list of currently installed programs, 

you should see “Microsoft .NET Framework 3.5 SP1”, as shown in Figure 1: 

 

 

Figure 1 System Requirements, .NET Framework 3.5 SP1 

If you do not see it in the list, you can download the framework from Microsoft. 

From a hardware standpoint, the Windows PC must contain one free USB port. An additional free USB 

port is required in order to use the CC Debugger and the USB Dongle simultaneously. 

IAR Embedded Workbench for 8051 development environment is required in order to make changes to 

the sensor tag software. More information on IAR can be found in the Texas Instruments Bluetooth® Low 

Energy Software Developer’s Guide Error! Reference source not found.. 



  SWRU270C 

 Page 4 of 30 

2. Getting Started 

This section describes how to set up the software and get started with the Development Kit. It is assumed 

that the Sensor tag comes pre-programmed out of the box. If not, please see Chapter 4 for details on how 

to program the sensor tag with the latest firmware. In addition, this section assumes that the latest 

version of the TI BLE software (v1.3.1 as of the release of this document) has been installed. The latest BLE 

software can be downloaded at www.ti.com/ble-stack. 

2.1 Associate Driver with USB Dongle 

After the software installation is complete, the USB Dongle driver must be associated with the device in 

order to use the demo application.  To associate the USB Dongle driver, first you must connect the USB 

Dongle to the PC’s USB port, or to a USB hub that connects to the PC. 

The first time that the dongle is connected to the PC, a message will most probably pop-up, indicating 

that Windows does not recognize the device. 

 

 

Figure 2 PC, Found New Hardware 

When prompted whether to use Windows Update search for software, select “No, not this time” and 

press the “Next” button. On the next screen, select the option “Install from a list or specific location 

(Advanced)”, and press the “Next” button: 

 

 

Figure 3 PC, Install Driver 

On the next screen, click the checkbox labeled “Include this location in the search:”, and click the 

“Browse” button. Select the following directory (assuming the default installation path was used): 

C:\Texas Instruments\BLE-CC254x-1.3.1\Accessories\Drivers 

 



  SWRU270C 

 Page 5 of 30 

 

Figure 4 PC, Select Driver 

Click the “Next” button. This should install the driver. It will take a few seconds for the file to load. If the 

installation was successful, you should see the screen to the below. Click the “Finish” button to complete 

the installation. 

 

 

Figure 5 PC, CDC Driver Installation Complete  

2.2 Determining the COM Port 

Once the driver is installed, you need to determine which COM port Windows has assigned to the USB 

Dongle. After you have completed the USB Dongle driver association in section 2.1, right-click on the 

“Computer” icon on your Start and select “Properties”, as shown in Figure 5. 

 

 

Figure 6 Win7 PC, Finding Computer Properties 

The “System Properties” window should open up. Click “Device Manager as shown in Figure 7. 

 



  SWRU270C 

 Page 6 of 30 

 

Figure 7 Win7 PC, Finding Device Manager 

A list of all hardware devices should appear. Under the section “Ports (COM & LPT)”, the device “TI 

CC2540 Low-Power RF to USB CDC Serial Port” should appear. Next to the name should be the port 

number (for example, the CC2540USB Dongle uses COM8 in Figure 8). 

 

 

Figure 8 Win7 PC, Connected Ports List 

Take note of this port number, as it will be needed in order to use BTool. You may close the device 

manager at this point. 

 



  SWRU270C 

 Page 7 of 30 

3. Using BTool  

BTool is a PC Application that allows a user to form a connection between two BLE devices. BTool works 

by communicating with the CC2540 USB Dongle, acting as a network processor, by means of HCI vendor 

specific commands. The USB Dongle software (when running the HostTestRelease project) and driver 

create a virtual serial port over the USB interface. BTool, running on the PC, communicates with the USB 

Dongle through this virtual serial port. 

More information on the network processor configuration and the HostTestRelease project can be found 

in the Texas Instruments Bluetooth® Low Energy Software Developer’s Guide. More information on the 

HCI interface, as well as details on the HCI vendor specific commands that are used by the CC2540/41, can 

be found in the TI BLE Vendor Specific HCI Reference Guide.  These documents can be found in the 

Documents folder of the stack install directory. 

For this section, a PC running windows 7 has been used, but the procedures are essentially the same for 

other windows version, such as XP. 

3.1 Starting the Application 

To start the application, go into your programs by choosing Start > Programs > Texas Instruments > BLE-

CC254x-1.3.1 > BTool. On Start-up you should be able to set the Serial Port Settings. Set the “Port” value 

to the COM port earlier noted in Section 3.2. For the other settings, use the default values as shown in 

Figure 9. Press “OK” to connect to the CC2540 USB Dongle. 

 

 

Figure 9 BTool, Serial Port settings 

When connected you should see the screen presented in Figure 10. The screen indicates that you now 

have a serial port connection to the CC2540 USB Dongle. The screen is divided up into a few sections: the 

left sidebar contains information on the CC2540 USB Dongle status. The left side of the sub-window 

contains a log of all messages sent from the PC to the CC2540 USB Dongle and received by the PC from 

the CC2540 USB Dongle. The right side of the sub-window contains a GUI for control of the CC2540 USB 

Dongle.  The bottom pane is the attribute explorer which we will discuss later on. 

 

 

 

 

 

 

 

 

 

 



  SWRU270C 

 Page 8 of 30 

 

 

 

Figure 10 BTool, Overview 

 

3.2 Creating a BLE Connection between USB Dongle and Sensor tag 

At this point the USB Dongle (central) is ready to discover other BLE devices that are advertising. The 

sensor tag should be preloaded with the sensor tag application. The full project and application source 

code files for the sensor tag are included in the BLE software development kit.  

At this time you will want to insert the battery (or remove and re-insert the battery to reset the device) 

into the sensor tag (peripheral).  You should also assemble the plastic and rubber portions of the kit to 

minimize ESD on the board. 

In order to ensure that you are connecting to the correct device, you need to know your sensor tag’s 

address.  To save time for this tutorial, we have included your address on the bottom of the lid of your 

development kit.  Alternatively, you can refer to section 5.3.2 for instructions to read the sensor tag’s 

primary address. 

3.2.1 Making the Sensor tag Discoverable 

When the sensor tag powers up, it will not immediately go into a discoverable state. To enable advertising 

and make the sensor tag discoverable, press the “pairing button” on the side of the sensor tag once. This 

will turn advertisements on; making the device discoverable for 30 seconds (this value is defined in the 

Specification of the Bluetooth System). After that time, the device will return to standby mode. To make 

the device discoverable again, simply press the button once again. During discoverable mode, the LED will 

flash green. 

 

Device Information 

Message Log Device Control 



  SWRU270C 

 Page 9 of 30 

 

 

 

 

 

 

 

Figure 11 Press Side Button to Turn On Advertisements 

3.2.2 Scanning for Devices 

In BTool, Press the “Scan” button under the “Discover / Connect” tab, as shown in Figure 12. 

 

 

Figure 12 BTool, Scan for Devices 

The USB Dongle will begin search for other BLE devices. As devices are found, the log on the left side of 

the screen will display the devices discovered. After 10 seconds, the device discovery process will 

complete, and the USB Dongle will stop scanning. A summary of all the scanned devices will be displayed 

in the log window. In the example in Figure 13, one peripheral device was discovered while scanning. If 

you do not want to wait through the full 10 seconds of scanning, the “Cancel” button can be pressed 

alternatively, which will stop the device discovery process. The address of any scanned devices will appear 

in the “Slave BDA” section of the “Link Control” section in the bottom right corner of the sub-window. 



  SWRU270C 

 Page 10 of 30 

 

Figure 13 BTool, Slave Address 

3.2.3 Selecting Connection Parameters 

Before establishing a connection, you can set up the desired connection parameters. The default values of 

100ms connection interval, 0 slave latency, and 20s supervision timeout should serve as a good starting 

point; however for different applications you may want to experiment with these values. 

Once the desired values have been set, be sure to click the “Set” button; otherwise the settings will not be 

saved. Note that the connection parameters must be set before a connection is established; changing the 

values and clicking the “Set” button while a connection is active will not change the settings of an active 

connection. The connection must be terminated and re-established to use the new parameters. (The 

Bluetooth specification does support connection parameter updates while a connection is active; however 

this must be done using either an L2CAP connection parameter update request, or using a direct HCI 

command. More information can be found in the Specification of the Bluetooth System) 

 

 

Figure 14 BTool, Connection Settings 

3.2.4 Establishing a Connection 

To establish a connection with the sensor tag, select the address of the device to connect with and click 

the “Establish” button as shown in Figure 15.  



  SWRU270C 

 Page 11 of 30 

 

Figure 15 BTool, Establish Connection 

If the sensor tag is still in discoverable mode, a connection should be established (if more than 30 seconds 

have passed since the device was previously made discoverable, press the right button on the sensor tag 

once again). Once a connection is established, the message window will return a “GAP_EstablishLink” 

event message with a “Status” value of “0x00 (Success)” as shown in Figure 16. 

 

Figure 16 BTool Log, Link Established 

In BTool, you can see your connected peripheral device in the Device Information field, as shown in Figure 

17. 

 

Figure 17 BTool, Device Information 

3.3 Using the Sensor Tag’s GATT Profiles 

We will now begin investigating the sensor tag’s GATT profiles.  Besides the standard GAP, GATT, and 

device information services, the sensor tag contains the following GATT services: temperature, 

accelerometer, humidity, magnetometer, barometer, gyroscope, simple keys, and test.  You will find the 

sensor tag complete attribute below and it can be used as a reference. Services are shown in yellow, 

characteristics are shown in blue, and characteristic values / descriptors are shown in grey.  

Services are constructed of characteristics, each of which have, at minimum, a declaration and a value, 

and may have a client configuration and/or a user description.  The actual payload data is stored with the 

characteristic values. All application data that is being sent or received in Bluetooth low energy must be 

contained within characteristic values. This section details a step-by-step process that demonstrates 

several processes for reading, writing, discovering, and notifying GATT characteristic values using BTool. 

 

In a Bluetooth low energy system, upon connection, the Central Device (GATT Client) performs a service 

discovery on the Peripheral device (GATT server) to build up an attribute table. This attribute table will 

provide handles (internal addresses of the characteristics) which can be used by the Client to access the 

data located in the Server. The service discovery is typically an automated process that can be started 

with a single command. In BTool however, the automated service discovery is not implemented (although 

it’s still possible to perform it manually). To simplify the evaluation of the sensor tag, the attribute table 

will be known and is shown below so it is possible to use handles directly to read out data.  

 



  SWRU270C 

 Page 12 of 30 

handle 

(hex)

handle 

(dec)

Type 

(hex)
Type (#DEFINE) Hex / Text Value (default)

GATT Server 

Permissions
Notes

0x1 1 0x2800 GATT_PRIMARY_SERVICE_UUID 0x1800 (GAP_SERVICE_UUID) GATT_PERMIT_READ Start of  GAP Service (Mandatory)

0x2 2 0x2803 GATT_CHARACTER_UUID

02 (properties: read only)

03 00 (handle: 0x0003)

00 2A (UUID: 0x2A00)

GATT_PERMIT_READ Device Name characteristic declaration

0x3 3 0x2A00 GAP_DEVICE_NAME_UUID "Sensor Tag" GATT_PERMIT_READ Device Name characteristic value

0x4 4 0x2803 GATT_CHARACTER_UUID

02 (properties: read only)

05 00 (handle: 0x0005)

01 2A (UUID: 0x2A01)

GATT_PERMIT_READ Appearance characteristic declaration

0x5 5 0x2A01 GAP_APPEARANCE_UUID 0x0000 GATT_PERMIT_READ Appearance characteristic value

0x6 6 0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

07 00 (handle: 0x0007)

02 2A (UUID: 0x2A02)

GATT_PERMIT_READ Peripheral Privacy Flag characteristic declaration

0x7 7 0x2A02 GAP_PERI_PRIVACY_FLAG_UUID 0x00 (GAP_PRIVACY_DISABLED)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Peripheral Privacy Flag characteristic value

0x8 8 0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

09 00 (handle: 0x0009)

03 2A (UUID: 0x2A03)

GATT_PERMIT_READ Reconnection address characteristic declaration

0x9 9 0x2A03 GAP_RECONNECT_ADDR_UUID 00:00:00:00:00:00
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Reconnection address characteristic value

0xA 10 0x2803 GATT_CHARACTER_UUID

02 (properties: read only)

0B 00 (handle: 0x000B)

04 2A (UUID: 0x2A04)

GATT_PERMIT_READ
Peripheral Preferred Connection Parameters 

characteristic declaration

0xB 11 0x2A04 GAP_PERI_CONN_PARAM_UUID

50 00 (100ms preferred min connection interval)

A0 00 (200ms preferred max connection interval)

00 00 (0 preferred slave latency)

E8 03 (10000ms preferred supervision timeout)

GATT_PERMIT_READ
Peripheral Preferred Connection Parameters 

characteristic declaration

0xC 12 0x2800 GATT_PRIMARY_SERVICE_UUID 0x1801 (GATT_SERVICE_UUID) GATT_PERMIT_READ Start of  GATT Service (mandatory)

0xD 13 0x2803 GATT_CHARACTER_UUID

20 (properties: indicate only)

0E 00 (handle: 0x000E)

05 2A (UUID: 0x2A05)

GATT_PERMIT_READ Service Changed characteristic declaration

0xE 14 0x2A05 GATT_SERVICE_CHANGED_UUID (null value) (none) Service Changed characteristic value

0xF 15 0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Write "01:00" to enable notif ications, "00:00" to disable

0x10 16 0x2800 GATT_PRIMARY_SERVICE_UUID 0x180A (DEVINFO_SERV_UUID) GATT_PERMIT_READ Start of  Device Information Service

0x11 17 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

11 00 (handle 0x0011)

23 2A (UUID 0x2A23) GATT_PERMIT_READ

System ID

characteristic declaration

0x12 18 0x2A23 DEVINFO_SYSTEM_ID_UUID xx xx xx 00 00 xx xx xx (xx's are IEEE address) GATT_PERMIT_READ System ID

0x13 19 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

13 00 (handle 0x0013)

24 2A (UUID 0x2A24) GATT_PERMIT_READ

Model Number String

characteristic declaration

0x14 20 0x2A24 DEVINFO_MODEL_NUMBER_UUID "Model Number" GATT_PERMIT_READ Model Number String

0x15 21 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

15 00 (handle 0x0015)

25 2A (UUID 0x2A25) GATT_PERMIT_READ

Serial Number String

characteristic declaration

0x16 22 0x2A25 DEVINFO_SERIAL_NUMBER_UUID "Serial Number" GATT_PERMIT_READ Serial Number String

0x17 23 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

17 00 (handle 0x0017)

26 2A (UUID 0x2A26) GATT_PERMIT_READ

Firmw are Revision String

characteristic declaration

0x18 24 0x2A26 DEVINFO_FIRMWARE_REV_UUID "Firmw are Revision" GATT_PERMIT_READ Firmw are Revision String

0x19 25 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

19 00 (handle 0x0019)

27 2A (UUID 0x2A27) GATT_PERMIT_READ

Hardw are Revision String

characteristic declaration

0x1A 26 0x2A27 DEVINFO_HARDWARE_REV_UUID "Hardw are Revision" GATT_PERMIT_READ Hardw are Revision String

0x1B 27 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

1B 00 (handle 0x001B)

28 2A (UUID 0x2A28) GATT_PERMIT_READ

Softw are Revision String

characteristic declaration

0x1C 28 0x2A28 DEVINFO_SOFTWARE_REV_UUID "Softw are Revision" GATT_PERMIT_READ Softw are Revision String

0x1D 29 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

1D 00 (handle 0x001D)

29 2A (UUID 0x2A29) GATT_PERMIT_READ

Manufacturer Name String

characteristic declaration

0x1E 30 0x2A29 DEVINFO_MANUFACTURER_NAME_UUID "Manufacturer Name" GATT_PERMIT_READ Manufacturer Name String

0x1F 31 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

1F 00 (handle 0x001F)

2A 2A (UUID 0x2A2A) GATT_PERMIT_READ

IEEE 11073-20601 Regulatory Certif ication Data List

characteristic declaration

0x20 32 0x2A2A DEVINFO_11073_CERT_DATA_UUID FE 00 65 78 70 65 72 69 6D 65 6E 74 61 6C GATT_PERMIT_READ IEEE 11073-20601 Regulatory Certif ication Data List

0x21 33 0x2803 GATT_CHARACTER_UUID

02 (read permissions)

22 00 (handle 0x0022)

50 2A (UUID 0x2A50) GATT_PERMIT_READ PnP ID characteristic declaration

0x22 34 0x2A2A PNPID_DATA_UUID FE 00 65 78 70 65 72 69 6D 65 6E 74 61 6C GATT_PERMIT_READ PnP ID

Sensor Tag Application: Complete Attribute Table

TI Base UUID: F000XXXX-0451-4000-B000-000000000000. 128-but UUIDs are typed 'bold'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  SWRU270C 

 Page 13 of 30 

0x23
35

0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA00 (IRTEMPERATURE_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Temperature Service

0x24

36

0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

25 00 (handle: 0x0025)

01 AA (UUID: 0xAA01)

GATT_PERMIT_READ

0x25 37 0xAA01 IRTEMPERATURE_DATA_UUID 00:00:00:00 (4 bytes) GATT_PERMIT_READ ObjectLSB:ObjectMSB:AmbientLSB:AmbientMSB

0x26

38

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Write "01:00" to enable notif ications, "00:00" to disable

0x27 39 0x2901 GATT_CHAR_USER_DESC_UUID "IR Temp. Data" (14 bytes) GATT_PERMIT_READ

0x28

40

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

29 00 (handle: 0x0029)

02AA (UUID: 0xAA02)

GATT_PERMIT_READ

0x29
41

0xAA02 IRTEMPERATURE_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Write "01" to start Sensor and Measurements, "00" to 

put to sleep

0x2A 42 0x2901 GATT_CHAR_USER_DESC_UUID "IR Temp. Conf." (15 bytes) GATT_PERMIT_READ

0x2B
43

0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA10 (ACCELEROMETER_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Accelerometer Service

0x2C

44

0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

2D 00 (handle: 0x002D)

11 AA (UUID: 0xAA11)

GATT_PERMIT_READ

0x2D 45 0xAA11 ACCELEROMETER_DATA_UUID 00:00:00 (3 bytes) GATT_PERMIT_READ X : Y : Z Coordinates

0x2E
46

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Write "01:00" to enable notif ications, "00:00" to disable

0x2F 47 0x2901 GATT_CHAR_USER_DESC_UUID "Accel. Data" (14 bytes) GATT_PERMIT_READ

0x30

48

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

31 00 (handle: 0x0031)

12 AA (UUID: 0xAA12)

GATT_PERMIT_READ

0x31
49

0xAA12 ACCELEROMETER_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Write "01" to start Sensor and Measurements, "00" to 

put to sleep

0x32 50 0x2901 GATT_CHAR_USER_DESC_UUID "Accel. Conf." (15 bytes) GATT_PERMIT_READ

0x33

51

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

34 00 (handle: 0x0034)

13 AA (UUID: 0xAA13)

GATT_PERMIT_READ

0x34
52

0xAA13 ACCELEROMETER_PERI_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Period = [Input*10] ms, default 1000 ms, low er limit 100 

ms

0x35 53 0x2901 GATT_CHAR_USER_DESC_UUID "Acc. Period" (12 bytes) GATT_PERMIT_READ

0x36
54

0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA20 (HUMIDITY_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Humidity Service

0x37

55

0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

38 00 (handle: 0x0038)

21 AA (UUID: 0xAA21)

GATT_PERMIT_READ

0x38 56 0xAA21 HUMIDITY_DATA_UUID 00:00:00:00 (4 bytes) GATT_PERMIT_READ TempLSB:TempMSB:HumidityLSB:HumidityMSB

0x39
57

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Write "01:00" to enable notif ications

0x3A 58 0x2901 GATT_CHAR_USER_DESC_UUID "Humid. Data" (14 bytes) GATT_PERMIT_READ

0x3B

59

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

3C 00 (handle: 0x003C)

22 AA (UUID: 0xAA22)

GATT_PERMIT_READ

0x3C
60

0xAA22 HUMIDITY_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

 Write "01" to start Sensor and Measurements, "00" to 

put to sleep

0x3D 61 0x2901 GATT_CHAR_USER_DESC_UUID "Humid. Conf." (15 bytes) GATT_PERMIT_READ

0x3E
62

0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA30 (MAGNETOMETER_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Magnetometer Service

0x3F

63

0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

40 00 (handle: 0x0040)

31 AA (UUID: 0xAA31)

GATT_PERMIT_READ

0x40 64 0xAA31 MAGNETOMETER_DATA_UUID 00:00:00:00:00:00 (6 bytes) GATT_PERMIT_READ XLSB:XMSB:YLSB:YMSB: ZLSB:ZMSB Coordinates

0x41
65

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE
Write "01:00" to enable notif ications, "00:00" to disable

0x42 66 0x2901 GATT_CHAR_USER_DESC_UUID "Mag. Data" (10 bytes) GATT_PERMIT_READ

0x43

67

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

44 00 (handle: 0x0044)

32 AA (UUID: 0xAA32)

GATT_PERMIT_READ

0x44
68

0xAA32 MAGNETOMETER_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Write "01" to start Sensor and Measurements, "00" to 

put to sleep

0x45 69 0x2901 GATT_CHAR_USER_DESC_UUID "Mag. Conf." (11 bytes) GATT_PERMIT_READ

0x46

70

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

47 00 (handle: 0x0047)

33 AA (UUID: 0xAA33)

GATT_PERMIT_READ

0x47
71

0xAA33 MAGNETOMETER_PERI_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Period = [Input*10]ms, default 2000ms, low er limit 100 

ms

0x48 72 0x2901 GATT_CHAR_USER_DESC_UUID "Mag. Period" (12 bytes) GATT_PERMIT_READ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  SWRU270C 

 Page 14 of 30 

0x49
73

0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA40 (BAROMETER_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Barometer Service

0x4A

74

0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

4B 00 (handle: 0x004B)

41 AA (UUID: 0xAA41)

GATT_PERMIT_READ

0x4B 75 0xAA41 BAROMETER_DATA_UUID 00:00:00:00 (4 bytes) GATT_PERMIT_READ TempLSB:TempMSB:PressureLSB:PressureMSB

0x4C
76

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

0x4D 77 0x2901 GATT_CHAR_USER_DESC_UUID "Barometer Data" (15 bytes) GATT_PERMIT_READ

0x4E

78

0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

53 00 (handle: 0x0053)

42 AA (UUID: 0xAA42)

GATT_PERMIT_READ

0x4F

79

0xAA42 BAROMETER_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Write "01" to start Sensor and Measurements, "00" to 

put to sleep, "02" to read calibration values from sensor

0x50 80 0x2901 GATT_CHAR_USER_DESC_UUID "Barometer Conf." (16 bytes) GATT_PERMIT_READ

0x51

81

0x2803 GATT_CHARACTER_UUID

02 (properties: read only)

4F 00 (handle: 0x004F)

43 AA (UUID: 0xAA43)

GATT_PERMIT_READ

0x52
82

0xAA43 BAROMETER_CALI_UUID 00:00:...:00:00 (16 bytes) GATT_PERMIT_READ
When w rite 02 to Barometer Conf. has been issued, the 

calibration values is found here

0x53
83

0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

0x54 84 0x2901 GATT_CHAR_USER_DESC_UUID "Barometer Cali." (16 bytes) GATT_PERMIT_READ

0x55 85 0x2800 GATT_PRIMARY_SERVICE_UUID 0xAA50 (GYROSCOPE_SERV_UUID ) GATT_PERMIT_READ Start of Sensor Profile Gyroscope Service

0x56 86 0x2803 GATT_CHARACTER_UUID

12 (properties: read/notify)

57 00 (handle: 0x0057)

51 AA (UUID: 0xAA51)

GATT_PERMIT_READ

0x57 87 0xAA51 GYROSCOPE_DATA_UUID 00:00:00:00:00:00 (6 bytes) GATT_PERMIT_READ XLSB:XMSB:YLSB:YMSB: ZLSB:ZMSB

0x58 88 0x2902 GATT_CLIENT_CHAR_CFG_UUID 00:00 (2 bytes)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

0x59 89 0x2901 GATT_CHAR_USER_DESC_UUID "Gyro. Data" (11 bytes) GATT_PERMIT_READ

0x5A 90 0x2803 GATT_CHARACTER_UUID

0A (properties: read/w rite)

5B 00 (handle: 0x005B)

52 AA (UUID: 0xAA52)

GATT_PERMIT_READ

0x5B 91 0xAA52 GYROSCOPE_CONF_UUID 1 (1 byte)
GATT_PERMIT_READ | 

GATT_PERMIT_WRITE

Write 0 to turn of f gyroscope, 1 to enable X axis only, 2 

to enable Y axis only, 3 = X and Y, 4 = Z only, 5 = X and 

Z, 6 = Y and Z, 7 = X, Y and Z

0x5C 92 0x2901 GATT_CHAR_USER_DESC_UUID "Gyro.  Conf." (13 bytes) GATT_PERMIT_READ

0x5D
93

0x2800 GATT_SERVICE_UUID 0xFFE0 (SK_KEYPRESSED_UUID)  GATT_PERMIT_READ Start of Simple Keys Service

0x5E

94

0x2803 GATT_CHARACTER_UUID

10 (notify permission)

34 00 (handle 0x0034)

E1 FF (UUID 0xFFE1)  GATT_PERMIT_READ Keys state characteristic declaration

0x5F
95

0xFFE1 SK_KEYPRESSED_UUID 0  (none)

Keys state characteristic value (bit mask of  left / right 

key presses). Side key as bit 2 in test mode only.

0x60
96

0x2902 GATT_CLIENT_CHAR_CFG_UUID 0x0000

 GATT_PERMIT_READ |         

GATT_PERMIT_WRITE

0x61 97 0x2901 GATT_CHAR_USER_DESC_UUID "Key Press State"  GATT_PERMIT_READ Keys state characteristic user description

0x62 98 0x2800 GATT_SERVICE_UUID 0xAA60 (TEST_SERVICE_UUID)  GATT_PERMIT_READ Start of TestService

0x63

99

0x2803 GATT_CHARACTER_UUID

02 (read permission)

64 00 (handle 0x0064)

61 AA (UUID: 0xAA61)  GATT_PERMIT_READ Test Data characteristic declaration

0x64 100 0xAA61 TEST_DATA_UUID 1 byte  GATT_PERMIT_READ Test Data: 1 bit set of each test passed

0x65 101 0x2901 GATT_CHAR_USER_DESC_UUID "Test Data" (10 bytes) GATT_PERMIT_READ

0x66

102

0x2803 GATT_CHARACTER_UUID

0A (read/w rite permission)

68 00 (handle 0x0068)

62 AA (UUID: 0xAA62)  GATT_PERMIT_READ Test Config characteristic declaration

0x67
103

0xAA62 TEST_CONFIG_UUID 1 byte  GATT_PERMIT_READ

Test Config: bit 7 - enable test mode, bit 1 - set LED2, bit 

0 - set LED 1

0x68 104 0x2901 GATT_CHAR_USER_DESC_UUID "Test Config" (12 bytes) GATT_PERMIT_READ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  SWRU270C 

 Page 15 of 30 

3.3.1 Reading a Characteristic Value by UUID 

A characteristic value is essentially where the data payload is stored, which could be, for example, 

temperature data or battery level. It is the stored data in a server that a client wants to access. A 

characteristic is a discrete value that has, at minimum, the following three properties associated with it: 

1. A handle (address) 

2. A type (UUID) 

3. A set of permissions 

Let’s consider the IR Temperature service: handles 0x23 to 0x2A as seen above.  This service has two 

characteristics: IR temperature data and IR temperature config. We must first enable the IR sensor by 

writing to the IR temperature config characteristic.  We can then read the temperature by reading from 

the IR temperature data characteristic.  First, let’s read the IR temperature config characteristic to ensure 

that isn’t already enabled (it won’t be).  The simplest way to read its value is to use the “Read 

Characteristic by UUID” sub-procedure. To do this, you will first need to click the “Read / Write” tab in 

BTool. Select the option “Read Using Characteristic UUID” under the “Sub-Procedure” option in the 

“Characteristic Read” section at the top of the screen. Enter the UUID we are looking for.  The UUID from 

the table above is 0xAA02.  However, this is a 128-bit UUID so we must add the TI Base UUID.  The 

effective UUID we are looking for is F000AA02-0451-4000-B000-000000000000.  Also, we must enter this 

LSB to MSB in BTool with each byte separated by a colon. So enter 

00:00:00:00:00:00:00:B0:00:40:51:04:02:AA:00:F0 in the “Characteristic UUID” box, and click the “Read” 

button as shown below. 

An attribute protocol Read by Type Request packet gets sent over the air from the central device to the 

peripheral device, and an attribute protocol Read by Type Response packet gets sent back from the 

peripheral device to the central device. The value “00” is displayed in the “Value” box, and “Success” is 

displayed in the “Status” box. The “00” indicates that the temperature sensor is not enabled.  In addition, 

the message window will display information on the Read by Type Response packet that was received by 

the central device. The message includes not only the characteristic’s data value, but also the handle of 

the characteristic value (0x0029 in this case).   

****Note that, as you read attributes from the peripheral, the attribute table in the bottom pane begins 

to fill up.  You can actually fill this entire table up initially by choosing ATT_FindInfoReq in the Adv. 

Commands tab.  You can then read and write to many characteristics by clicking on their respective 

column in the table.  However, it is recommended to go through these manual steps first to gain 

understanding. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



  SWRU270C 

 Page 16 of 30 

3.3.2 Writing a Characteristic Value 

In the previous section, the handle of the config characteristic in the IR Temperature service was found to 

be 0x0029. Knowing this, and based on the fact that the characteristic has both read and write 

permissions, it is possible for us to write a new value. Enter “0x0029” into the “Characteristic Value 

Handle” box in the “Characteristic Write” section, and enter “01” in the “Value” section (the format can 

be set to either “Decimal” or “Hex”) to enable the temperature sensor. Click the “Write” button as shown 

below. 

An attribute protocol Write Request packet gets sent over the air from the central device to the peripheral 

device, and an attribute protocol Write Response packet gets sent back from the peripheral device to the 

central device. The status box will display “Success”, indicating that the write was successful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write a Characteristic Value 

3.3.3 Reading a Characteristic Value by Handle 

This time, instead of reading the value by its UUID, the value will be read by its handle. Select the option 

“Read Characteristic Value / Descriptor” under the “Sub-Procedure” option in the “Characteristic Read” 

section. Enter “0x0029” in the “Characteristic Value Handle” box, and click the “Read” button as shown 

below. 

An attribute protocol Read Request packet gets sent over the air from the central device to the peripheral 

device, and an attribute protocol Read Response packet gets sent back from the peripheral device to the 

central device. The new value is displayed in the “Value” box, and “Success” is displayed in the “Status” 

box. This value should match the value that was written in the previous step. 

 



  SWRU270C 

 Page 17 of 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Read a Characteristic Value by Handle 

3.3.4 Discovering a Characteristic by UUID 

Consider a situation in which you want to know if the GATT server has a characteristic with a given UUID 

and, if so, where it is located in the attribute table.  In this case, we need to discover a characteristic by its 

UUID.  By doing this, we will not only get the handle of the UUID, but we will also get the properties of the 

characteristic. The UUID of the IR temperature data characteristic is, not including the TI 128-bit mask, 

0xAA01. Select the option “Discover Characteristic by UUID” under the “Sub-Procedure” option in the 

“Characteristic Read” section at the top of the screen. Adding the mask and reversing the bytes, enter 

00:00:00:00:00:00:00:B0:00:40:51:04:01:AA:00:F0 in the “Characteristic UUID” box, and click the “Read” 

button as shown below. 

A series of attribute protocol Read by Type Request packets get sent over the air from the central device 

to the peripheral device, and for each request an attribute protocol Read by Type Response packet gets 

sent back from the peripheral device to the central device. Essentially, the central device is reading every 

attribute on the peripheral device with a UUID of 0x2803 (this is the UUID for a characteristic declaration 

as defined in Specification of the Bluetooth System), and checking the “Characteristic Value UUID” portion 

of each declaration to see if it matches the UUID we are looking for. The procedure is complete once 

every characteristic declaration has been read. 

The procedure will find one instance of the characteristic with type 0xFFF2, and display “12 25 00 00 00 

00 00 00 00 00 B0 00 40 51 04 01 AA 00 F0” (the value of the declaration) in the “Value” box, with 

“Success” displayed in the “Status” box. As per the Bluetooth specification, the first byte “12” tells us that 

the properties of the characteristic are read and notify. The second and third bytes “25 00” tell us that the 

handle of the characteristic value is 0x0025. The remaining bytes tell the UUID of the characteristic. 

Now that the temperature sensor is enabled, using the steps above, read the value of IR temperature 

data characteristic (handle 0x0025).  This data would need to be converted to a human-readable 

temperature value.  Regardless, you should be able to increase / decrease the least significant bytes by 

cooling / warming the sensor.  

 



  SWRU270C 

 Page 18 of 30 

 

 

Discover a Characteristic by UUID 

3.3.5 Enabling Notifications 

In BLE, it is possible for a GATT server device to “push” characteristic value data out to a client device, 

without being prompted with a read request. This process is called a “characteristic value notification”. 

Notifications are useful in that they allow a device in a BLE connection to send out as much or as little 

data as required at any point in time. In addition, since no request from the client is required, the 

overhead is reduced and the data is transmitted more efficiently. The Sensor Tag software contains an 

example in which notifications can be demonstrated. 

KeyPressed (handle 0x005E), the only characteristic in the SimpleKeyService, has notify-only properties. 

When any of the keys are pressed / released, the KeyPressed characteristic value gets set by the 

application and the SimpleKeys profile will check to see if notifications are enabled. If they are enabled, 

the profile will send a notification of the value to the client device. 

Before notifications can be enabled, the handle of the fourth characteristic must be found. This can be 

done by using the “Discover Characteristic by UUID” process (see section 3.3.4), with the UUID value set 

to E1:FF. Note that this is only a 16-bit UUID.  This will be changed to a 128-bit UUID in a future release as 

this is the preferred method to avoid UUID overlaps.  The procedure will find one instance of the 

characteristic with type 0xFFE1, and display “10 5F 00 E1 FF” (the value of the declaration) in the “Value” 

box, with “Success” displayed in the “Status” box. As per the Bluetooth specification, the first byte “10” 

tells us that the properties of the characteristic are notify-only. The second and third bytes “5F 00” tell us 

that the handle of the characteristic value is 0x005F. The fourth and fifth bytes tell the UUID of the 

characteristic, 0xFFE1. 

In order to enable notifications, the client device must write a value of 0x0001 to the client characteristic 

configuration descriptor for the particular characteristic. The handle for the client characteristic 

configuration descriptor immediately follows the characteristic value’s handle. Therefore, a value of 

0x0001 must be written to handle 0x0060. Enter “0x0060” into the “Characteristic Value Handle” box in 

the “Characteristic Write” section, and enter “01:00” in the “Value” section (note that the LSB is entered 



  SWRU270C 

 Page 19 of 30 

first, and the MSB is entered last and all client characteristic configurations are two-byte values). Click the 

“Write Value” button. The status box will display “Success”, indicating that the write was successful. 

Every time a key is pressed or released, an attribute protocol Handle Value Notification packet gets sent 

from the peripheral device to the central device. With each notification, the value of the characteristic at 

handle is displayed in the log window. 

Note that it is also possible to send indications in the same manner if the characteristic has indication 

property.  In this case, the only difference is that the GATT client must respond to the indication to verify 

that it received the data. 

 

 

Figure 18 BTool, Enable Notifications 

It is important to note that the simple GATT profile included with the BLE development kit does not 

conform to any standard profile specification available from the Bluetooth SIG. The profile, including 

the GATT characteristic definition, the UUID values, and the functional behavior, was developed by 

Texas Instruments for use with the CC2540DK or CC2542EMK development kit, and is intended as a 

demonstration of the capabilities of the Bluetooth low energy protocol. 

3.4 Using BLE Security 

BTool also includes the ability to make use of security features in BLE, including encryption, 

authentication, and bonding.  

3.4.1 Encrypting the Connection 

To encrypt the link, the pairing process must be initiated. Click on the “Pairing / Bonding” tab in BTool. In 

the “Initiate Pairing” section at the top of the screen, check the boxes labeled “Bonding Enabled” and 

“Authentication (MITM) Enabled”, and click the button “Send Pairing Request”, as shown in Figure 19. 

This will send the request to the peripheral device. 

+1 



  SWRU270C 

 Page 20 of 30 

 

 

Figure 19 BTool, Send Pairing Request 

The peripheral will send a pairing response in return, which will require a six-digit passcode to be entered 

by the user in order to complete the process. Typically, this passcode is intended to be used by a 

peripheral device containing a display. By displaying the passkey on the peripheral device and requiring 

the user to enter it in on the central device’s user interface, the link is authenticated, in that it has been 

verified that the connection has not been hijacked using a man-in-the-middle (MITM) attack. 

In the case of the SimpleBLEPeripheral software, a fixed passcode “000000” is used (this value can be 

modified in the source code). In the box labeled “Passkey” in the “Passkey Input” section, enter the value 

“000000” and click the “Send Passkey” button, as shown in Figure 20. Note that if you do not send the 

passkey within 30 seconds after receiving the pairing response message, the pairing process will fail, and 

you will need to re-send the pairing request. 

 



  SWRU270C 

 Page 21 of 30 

 

Figure 20 BTool, Send Passkey 

When pairing is successfully completed, you will see a “GAP_AuthenticationComplete” event in the log 

window, with a “Success” status. The BLE connection is now encrypted.  

3.4.2 Using Bonding and Long-Term Keys 

Bonding is a feature in BLE that allows a device, after initial pairing with a peer, to remember specific 

information about that peer device. In particular, the long-term key data that is generated during the 

initial pairing process can be stored locally. If the connection is then terminated and the two devices later 

reconnect, this data can be used to quickly re-initiate encryption without needing to go through the full 

pairing process and/or use a passkey. In addition, if a client device had enabled notifications of any 

characteristics on the server device while the two devices were bonded, the server device will remember 

the setting and the client will not have to re-enable them. 

After pairing has been completed with bonding enabled, the “Long-Term Key (LTK) Data” will be 

populated with some of the data from the “GAP_AuthenticationComplete” event that was generated 

during the encryption process. This data is required for re-initiating encryption upon reconnect. Click the 

“Save Long-Term Key Data to File” button to save this information to file, as shown in Figure 21. The data 

is saved as in a “comma separated value” (CSV) format as simple text, and can be store anywhere on disk. 

Be sure to note the location that the file is stored. 

 

Figure 21 BTool, Save Long-Term Key Data to File 

Within the peripheral device, a similar process is going on, in that the SimpleBLEPeripheral software 

contains a bond manager that is storing the long-term key data that it had generated during encryption. 

Since the SimpleBLEPeripheral does not have a file system, it is simply storing the data in the nonvolatile 

memory of the CC2540/41. More information on the bond manager can be found in Texas Instruments 

Bluetooth® Low Energy Software Developer’s Guide Error! Reference source not found.. 

With a bond now active, you can enable notifications of a characteristic value and have that setting 

remembered for later. Note that if notifications were enabled before going through the pairing process, 

then the setting will not be stored. Therefore, you will need to re-write the value “01:00” to a client 

characteristic configuration descriptor. For example, write “01:00” to handle 0x002F to enable the 



  SWRU270C 

 Page 22 of 30 

periodic notifications, as was done in section 3.3.5. You should now be receiving a notification once every 

five seconds. Because the devices are paired with bonding enabled, the bond manager in the 

SimpleBLEPeripheral software will store the client characteristic configuration descriptor data in 

nonvolatile memory. 

To verify that bonding worked, you will need to disconnect and re-connect. Click on the “Discover / 

Connect” tab and click the “Terminate” button at the bottom of the screen to disconnect from the 

peripheral device, as shown in Figure 22. The message window will show a “GAP_TerminateLink” event 

with “Success” status. In addition, the connection information in the upper-left corner of the screen will 

disappear. 

 

 

Figure 22 BTool, Terminate Link 

At a later time, re-connect with the peripheral device following the procedure in section 3.2.4. Once 

connected, you will notice that the periodic notifications are no longer enabled. This is because the 

Simple GATT profile will always reset the value of the client characteristic configuration descriptor back to 

“00:00” if a connection is terminated or if the device resets. 

To re-initiate encryption and re-enable the periodic notifications, return to the “Pairing / Bonding” tab. In 

the “Initiate Bond” section, click the “Load Long-Term Key Data From File” button, and select the file in 

which the data was previously stored. The data fields will get automatically populated from the data in 

the file. Click the “Initiate Bond” button to re-enable encryption, as shown in Figure 23. 

 



  SWRU270C 

 Page 23 of 30 

 

 

Figure 23 BTool, Re-initiate Encryption  

A “GAP_BondComplete” event with “Success” status will be displayed in the message window. This 

indicates that the link has been re-encrypted, which can be verified by reading the fifth characteristic 

value in the SimpleGATTProfile at handle 0x0032. You will also now be receiving periodic notifications of 

the fourth characteristic value, as the client characteristic configuration descriptor value of the 

characteristic has been restored. Any changes to the client characteristic configuration descriptor value 

(i.e. turning off notifications) will be saved to nonvolatile memory and remembered for next time that 

encryption is initiated using the long-term key. 

3.5 Additional Sample Applications 

In addition to the Sensor tagDemo application, the BLE software development kit includes project and 

source code files for several additional applications and profiles, including: 

• Blood Pressure Sensor- with simulated measurements 

• Emulated Keyboard- press the two buttons on the sensor tag to simulate keyboard presses 

• Heart Rate Sensor- with simulated measurements 

• Health Thermometer- with simulated measurements 

• Glucose Sensor – with simulated measurements 

• SimpleBLEPeripheral - with proprietary profile which implements all various types of permissions 

More information on these projects can be found in the Texas Instruments BLE Sample Applications Guide 

Error! Reference source not found.. 



  SWRU270C 

 Page 24 of 30 

4. Programming / Debugging the CC2540 or CC2541 

The CC Debugger included with the CC254XDK-MINI kit allows for debugging using IAR Embedded 

Workbench for 8051, as well as for reading and writing hex files to the CC2540/41 flash memory using the 

SmartRF Flash Programmer software. SmartRF Flash Programmer also has the capability to change the 

IEEE address of the CC2540/41 device. The BLE software development kit includes hex files for both the 

USB Dongle as well as the sensor tag. This section details the hardware setup when using the CC 

Debugger, as well as information on using SmartRF Flash Programmer. Information on using IAR 

Embedded Workbench for debugging can be found in the Texas Instruments Bluetooth® Low Energy 

Software Developer’s Guide Error! Reference source not found.. 

4.1 Hardware Setup for Sensor tag 

If the sensor tag is viewed with the LED on top and the coin cell battery holder at the bottom, then the set 

of pins closer to the top are the ones that should be used for connecting to the debugger. Pin 1 is the pin 

on the lower right side as shown in Figure 24. 

 

 

Figure 24 CC2540 Sensor tag, Debug Connector 

Connect the CC Debugger to the sensor tag as shown below. Be sure that the ribbon cable is oriented 

properly, with the red stripe connected to pin 1 as shown in Figure 25. 

 

 

Figure 25 CC2540 Sensor tag Connected to CC Debugger 

Insert a coin cell battery in the sensor tag to supply power to the target. NB! Note the orientation of the 

battery (+ up, - down). Next, connect the CC Debugger to the PC’s USB port and then to the sensor tag. 

Note that the CC debugger will by default not supply any power, but it will sense the voltage on the target 

(in this case the sensor tag) for proper level shifting of the debug signals. The status indicator LED on the 

CC Debugger should turn on. If the LED is red, that means no CC2540/41 device was detected. If it is 

green, then a CC2540/41 device has been detected. If the sensor tag is connected and the LED is red, try 

pressing the reset button on the CC Debugger. This resets the debugger and re-checks for a CC2540/41 

device. If the LED still does not turn green, re-check that all cables are securely connected. Also verify that 

the CC Debugger has the latest firmware (see section 4.3). 



  SWRU270C 

 Page 25 of 30 

 

Figure 26 CC Debugger Interface 

Once the CC Debugger is set up with the status indicator LED showing green, you are ready to either read 

or write a hex file from the board, or to start debugging a project using IAR Embedded Workbench. 

 

Power Savings Tip: Do not leave the CC Debugger connected to the sensor tag for and extended period 

of time with the battery in the sensor tag. This will cause a higher, constant current draw from the 

battery, and will significantly reduce the battery life. 

If you intend to perform a lot of debugging and expect to leave the debugger connected to the sensor 

tag for a long time, it is possible to supply power directly from the CC Debugger. In this case, the first 

thing you need to do is to remove the battery. This is important in order to avoid any charging current 

to the battery. 

On the CC2540Sensor tag, locate the pads for resistor R1, which are located immediately next to the 

debug header. Using a soldering iron, solder a small piece of wire across the two pads, shorting them 

together as shown in Figure 27. 

 

Figure 27 CC2540, Power Device Using CC Debugger 

On the CC2541 Sensor tag, short-circuit the two pins on the P1 connector, next to the LED, with the 

small jumper included in the kit.  

 

WARNING! This kit includes a non-rechargeable lithium battery. To minimize risk 

of personal injury and/or property damage due to potential of explosion/rupture 

of battery due to charging the coin cell, always make sure battery is completely 

removed from the CC2541 Sensor tag before trying to power it from the CC 

Debugger.  As with any lithium battery, proper disposal should always be done 

and keep out of the reach of children at all times. 



  SWRU270C 

 Page 26 of 30 

 

4.2 Hardware Setup for USB Dongle 

The setup process for flashing the USB Dongle is very similar to the process when flashing the sensor tag. 

First, plug the USB Dongle into a PC USB port (or a USB hub), as shown in Figure 28. 

 

 

Figure 28 CC2540 USB Dongle 

Connect the CC Debugger to the USB Dongle as shown below. Be sure that the ribbon cable is oriented 

properly, with the red stripe connected to pin 1 as shown in Figure 29. 

 

Figure 29 CC2540 USB Dongle Connected to CC Debugger 

Connect the CC Debugger to the PC USB port. The status indicator LED on the CC Debugger should turn 

on. If the LED is red, that means no CC2540 device was detected. If it is green, then a CC2540 device has 

been detected. If the USB Dongle is connected and the LED is red, try pressing the reset button on the CC 

Debugger. This resets the debugger and re-checks for a CC2540 device. If the LED still does not turn green, 

re-check that all cables are securely connected. 



  SWRU270C 

 Page 27 of 30 

 

 

Figure 30 CC Debugger Interface 

Once the CC Debugger status LED is showing green, as shown in Figure 30, you are ready to use IAR to 

debug or to read or write a hex file from/to the USB Dongle. 



  SWRU270C 

 Page 28 of 30 

4.3 Using SmartRF Flash Programmer Software 

Note: the instructions in the section apply to the latest version of SmartRF Flash Programmer (version 

1.12.6), which is available at the following URL: http://www.ti.com/tool/flash-programmer  

To start the application go into your programs by choosing Start > All Programs > Texas Instruments > 

SmartRF Flash Programmer > SmartRF Flash Programmer. The program start-up screen is shown in Figure 

31.  

 

 

Figure 31 Flash Programmer 

Note. If you get prompted to update the EB Firmware (CC Debugger), follow the presented instructions to 

update the CC Debugger.  

4.3.1 Reading or Writing a Hex File to the CC2540/41 

To read or write a hex file to the CC2540/41, select the “System-on-Chip” tab (default). The connected 

CC2540/41 should be detected and show up in the list of devices. Under “Flash image” select the desired 

hex file that you would like to write to the device. If you are reading from the CC2540/41, under “Flash 

image” enter the desired path and filename for the hex file. To write to the CC2540/41, under “Actions” 

select “Erase, program and verify”. To read from the CC2540/41, under “Actions” select “Read flash into 

hex-file”. To begin the read or write, click the button “Perform actions”. 

If the action completes successfully, you should see the progress bar at the bottom of the window fill up, 

and either one of the following two messages, depending on whether a write or a read was performed: 

“CC254X - IDXXXX: Erase, program and verify OK” or “CC254X - IDXXXX: Flash read OK”. 



  SWRU270C 

 Page 29 of 30 

4.3.2 Reading or Writing the CC2540/41 Device Address 

Every CC2540/41 device comes pre-programmed with a unique 48-bit IEEE address. This is referred to as 

the device’s “primary address”, and cannot be changed. It is also possible to set a “secondary address” on 

a device, which will override the primary address upon power-up. Flash Programmer can be used to read 

the primary address, as well as to read or write the secondary address. 

To read the primary address of a device connected to the CC Debugger, select “Primary” under the 

“Location” option, and click the “Read IEEE” button. The primary device address should appear in the box 

on the right as shown in Figure 32.  

 

 

Figure 32 Flash Programmer, Read Primary address 

To read the secondary address, select “Secondary” under the “Location” option, and click the “Read IEEE” 

button. The secondary device address should appear in the box on the right.  

To set a new secondary address, select “Secondary” under the “Location” option, and enter the desired 

address in the box on the right. Click the “Write IEEE” button to perform the write. If the secondary 

device is set to “FF FF FF FF FF FF”, the device will use the primary address. If the secondary device is set 

to anything else, the secondary address will be used. 

 



  SWRU270C 

 Page 30 of 30 

5. SmartRF™ Packet Sniffer 

The SmartRF™ Packet Sniffer is a PC software application used to display and store RF packets captured 

with a listening RF hardware node. Various RF protocols are supported, included Bluetooth low energy. 

The Packet Sniffer filters and decodes packets and displays them in a convenient way, with options for 

filtering and storage to a binary file format. 

 

 

Figure 33 SmartRF Packet Sniffer 

The CC2540 USB Dongle included with the CC2540/41 Mini Development Kit can be used as the listening 

hardware node, and can be useful when debugging Bluetooth low energy software applications. The 

SmartRF™ Packet Sniffer software can be downloaded at http://www.ti.com/tool/packet-sniffer. 

 

 


