
ATMEL – WinCUPL
..
USER’S MANUAL

2

Table of Contents

Section 1
Introduction to Programmable Logic .. 1-1

1.1 What is Programmable Logic? .. 1-1

1.2 Device Technologies and Packaging 1-6

1.3 Programming Logic Devices ... 1-7

1.4 Functionally Testing Logic Devices ... 1-7

Section 2
Designing with the CUPL™ Language ... 2-1

2.1 Declaration of Language Elements ... 2-1

2.2 Usage of the Language Syntax ... 2-2

2.3 Advanced Language Syntax ... 2-14

Section 3
Using the CUPL Compiler ... 3-1

3.1 About The Compiler .. 3-1

3.2 Output File Format Descriptions .. 3-6

Section 4
CUPL Tutorial .. 4-1

4.1 Tutorial for Gates .. 4-1

4.2 Tutorial for COUNT10 ... 4-3

4.3 Tutorial for SQUARE.PLD ... 4-5

Section 5
CUPL Software Features ... 5-1

5.1 CUPL - PALexpert ... 5-1

5.2 CUPL - PLDmaster .. 5-1

5.3 CUPL - Total Designer .. 5-1

5.4 CUPL - Total Designer VHDL .. 5-1

5.5 ONCUPL ... 5-2

5.6 Liaison ... 5-2

5.7 PLPartition ... 5-2

5.8 How to Contact Logical Devices... 5-2

i

ii

Section 1

Introduction to Programmable Logic

1.1 What is
Programmable
Logic?

Programmable logic, as the name implies, is a family of components that contains
arrays of logic elements (AND, OR, INVERT, LATCH, FLIP-FLOP) that may be config-
ured into any logical function that the user desires and the component supports. There
are several classes of programmable logic devices: ASICs, FPGAs, PLAs, PROMs,
PALs, GALs, and complex PLDs.

1.1.1 ASICs ASICs are Application Specific Integrated Circuits that are mentioned here because
they are user definable devices. ASICs, unlike other devices, may contain analog, dig-
ital, and combinations of analog and digital functions. In general, they are mask pro-
grammable and not user programmable. This means that manufacturers will configure
the device to the user specifications. They are used for combining a large amount of
logic functions into one device. However, these devices have a high initial cost, there-
fore they are mainly used where high quantities are needed. Due to the nature of
ASICs, CUPL and other programmable logic languages cannot support these devices.

1.1.2 Basic architecture of
a user programmable
device

First, a user programmable device is one that contains a pre-defined general architec-
ture in which a user can program a design into the device using a set of development
tools. The general architectures may vary but normally consists of one or more arrays
of AND and OR terms for implementing logic functions. Many devices also contain
combinations of flip-flops and latches which may be used as storage elements for
inputs and outputs of a device. More complex devices contain macrocells. Macrocells
allow the user to configure the type of inputs and outputs that are needed for a design.
WinCUPL User’s Manual 1-1

Introduction to Programmable Logic
Figure 1-1. Elementary PROM architecture

1.1.3 PROMs PROMs are Programmable Read Only Memories. Even though the name does not
imply programmable logic, PROMs, are in fact logic. The architecture of most PROMs
typically consists of a fixed number of AND array terms that feeds a programmable OR
array. They are mainly used for decoding specific input combinations into output func-
tions, such as memory mapping in microprocessor environments.

A A B B C C

A

B

C

PT0

PT1

PT2

PT3

PT4

PT5

PT6

PT7

/C./B./A

/C./B. A

/C. B./A

/C. B. A

C./B./A

C./B. A

C. B./A

C. B. A

F0

F1

F2

F3

F4

F5

F6

F7

FIXED
“AND”

PROGRAMMABLE
“OR”

S Y
1-2 WinCUPL User’s Manual

Introduction to Programmable Logic
Figure 1-2. Elementary PAL architecture

1.1.4 PALs PALs are Programmable Array Logic devices. The internal architecture consists of pro-
grammable AND terms feeding fixed OR terms. All inputs to the array can be ANDed
together, but specific AND terms are dedicated to specific OR terms. PALs have a very
popular architecture and are probably the most widely used type of user programmable
device. If a device contains macrocells, it will usually have a PAL architecture. Typical
macrocells may be programmed as inputs, outputs, or input/output (I/O) using a tri-
state enable. They normally have output registers which may or may not be used in
conjunction with the associated I/O pin. Other macrocells have more than one register,
various type of feedback into the arrays, and occasionally feedback between macro-
cells. These devices are mainly used to replace multiple TTL logic functions commonly
referred to as glue logic.

A A B B C C

A

B

C

FIXED
“OR”

PROGRAMMABLE
“AND”

F0
F1
F2
F3
F4
F5

F6
F7
F8
F9
F10
F11

F12
F13
F14
F15
F16
F17

PT0

PT1

PT2

S Y
WinCUPL User’s Manual 1-3

Introduction to Programmable Logic
1.1.5 GALs GALs are Generic Array Logic devices. They are designed to emulate many common
PALs thought the use of macrocells. If a user has a design that is implemented using
several common PALs, he may configure several of the same GALs to emulate each of
the other devices. This will reduce the number of different devices in stock and
increase the quantity purchased. Usually, a large quantity of the same device should
lower the individual device cost. Also these devices are electrically erasable, which
makes them very useful for design engineers.

Figure 1-3. Elementary PLA architecture

1.1.6 PLAs PLAs are Programmable Logic Arrays. These devices contain both programmable
AND and OR terms which allow any AND term to feed any OR term. PLAs probably
have the greatest flexibility of the other devices with regard to logic functionality. They
typically have feedback from the OR array back into the AND array which may be used
to implement asynchronous state machines. Most state machines, however, are imple-
mented as synchronous machines. With this in mind, manufacturers created a type of
PLA called a Sequencer which has registered feedback from the output of the OR
array into the AND array.

1.1.7 Complex PLDs Complex PLDs are what the name implies, Complex Programmable Logic Devices.
They are considered very large PALs that have some characteristics of PLAs. The
basic architecture is very much like a PAL with the capability to increase the amount of
AND terms for any fixed OR term. This is accomplished by either stealing adjacent
AND terms or using AND terms from an expander array. This allows for most any
design to be implemented within these devices.

F0 F1 F2 F3

F8
F9

F10
F11

ST1 (A./B + /A.B)

ST2 (/A.B)

A A

/A

B B

/B

PT1

F4 F5 F6 F7

PT2

(/A.B)(A./B)
1-4 WinCUPL User’s Manual

Introduction to Programmable Logic
Figure 1-4. Elementary FPGA architecture

1.1.8 FPGAs FPGAs are Field Programmable Gate Arrays. Simply put, they are electrically pro-
grammable gate array ICs that contain multiple levels of logic. FPGAs feature high
gate densities, high performance, a large number of user-definable inputs and outputs,
a flexible interconnect scheme, and a gate-array-like design environment. They are not
constrained to the typical AND-OR array. Instead, they contain an interior matrix of
configurable logic clocks (CLBs) and a surrounding ring of I/O blocks (IOBs). Each
CLB contains programmable combinatorial logic and storage registers. The combinato-
rial logic section of the block is capable of implementing any Boolean function of its
input variables. Each IOC can be programmed independently to be an input, and out-
put with tri-state control or a bi-directional pin. It also contains flip-flops that can be
used to buffer inputs and outputs. The interconnection resources are a network of lines
that run horizontally and vertically in the rows and columns between the CLBs. Pro-
grammable switches connect the inputs and outputs of IOBs and CLBs to nearby lines.
Long lines run the entire length or breadth of the device, bypassing interchanges to
provide distribution of critical signals with minimum delay or skew. Designers using
FPGAs can define logic functions of a circuit and revise these functions as necessary.
Thus FPGAs can be designed and verified in a few days, as opposed to several weeks
for custom gate arrays.

CONFIGURABLE
LOGIC BLOCK

I/O BLOCK

INTERCONNECT AREA
WinCUPL User’s Manual 1-5

Introduction to Programmable Logic
1.2 Device
Technologies and
Packaging

1.2.1 Device Technologies Some of the technologies available are CMOS (Complimentary Metal Oxide Semicon-
ductor), bipolar TTL, GaAs (Gallium Arsenide), and ECL (Emitter Coupled Logic) as
well as combination fabrications like BiCMOS and ECL/bipolar. The two fastest semi-
conductor technologies are ECL and GaAs. However, these are also the most power
hungry. Generally speed is proportional to power consumption.

1.2.2 Device Packaging The packaging for devices fall into two categories: erasability and physical configura-
tion. Certain devices have the capability of being erased and reprogrammed. These
devices are erased by either applying UV light or a high voltage to re-fuse the cross-
connection link. A UV erasable device will have a “window” in the middle of the device
that allows the UV light to enter inside. An electrically erasable device usually need to
have a high voltage applied to certain pins to erase the device. A device that cannot be
erased is called One Time Programmable (OTP). As the name suggests, these
devices can only be programmed once. Recent advances allow reprogramming with-
out the use of high voltages

Figure 1-5. Picture of DIP and LCC devices

Programmable devices come in many shapes and sizes. Most devices come in the fol-
lowing physical configurations: DIP (Dual Inline Package), SKINNY-DIP, LCC (Leaded
Chip Carrier), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Pack), BGA (Ball
Grid Array), SOIC (Small Outline I.C.), TSOP (Thin Small Outline), and PGA (Pin Grid
Array). These devices can be rectangular with pins on two sides, square with pins on
all sides, or square with pins on the underside. It is important for the hardware and soft-
ware development tools to fully support as many device types as possible to take full
advantage of the myriad of devices on the market.
1-6 WinCUPL User’s Manual

Introduction to Programmable Logic
1.3 Programming
Logic Devices

Programmable logic devices are programmed by either shorting or opening connec-
tions within a device array, thus connecting or disconnecting inputs to a gate. Most
hardware programmers receive a fuse information file from a software development
package in ASCII format. The ASCII file could either be in JEDEC format for PLDs or
HEX format for PROMs. This file contains the information necessary for the program-
mer to program the device. The JEDEC file contains fuse connections that are repre-
sented by an address followed by a series of 1’s and 0’s where a “1” indicates a dis-
connected state and a “0” indicates a connected state. The JEDEC file can also con-
tain information that allows the hardware programmer the ability to perform a functional
test on the device.

1.4 Functionally
Testing Logic
Devices

A functional test may be performed after programming a device, provided that the
hardware and software development package can support the generation and use of
test vectors. Test vectors consist of a list of pins for the design, input values for each
step of the functional test, and a list of expected outputs from the circuit. The program-
mer sequences through the input values, looks for the predicted outputs, and reports
the results to the user. This allows design engineers and production crews the ability to
verify that the programmed device works as designed.
WinCUPL User’s Manual 1-7

Introduction to Programmable Logic
1-8 WinCUPL User’s Manual

Section 2

Designing with the CUPL Language

When creating any design, it is generally considered good practice to implement the
design using a “Top-Down” approach. A Top-Down design is characterized by starting
with a global definition of the design, then repeating the global definition process for
each element of the main definition, etc., until the entire project has been defined.
CUPL offers many features that accommodate this type of design. This chapter
describes the instructions that CUPL offers for implementing a design.

2.1 Declaration of
Language
Elements

This section describes the elements that comprise the CUPL logic description lan-
guage.

2.1.1 Pin/Node Definition Since the PIN definitions must be declared at the beginning of the source file, their
definition is a natural starting point for a design. Nodes and pinnodes, used to define
buried registers, should also be declared at the beginning of the source file. Pin assign-
ment needs to be done if the designer already knows the device he wants to use. How-
ever, when creating a VIRTUAL design only the variable names that will later be
assigned to pins need to be filled in. The area that normally contains the pin numbers
will be left blank.

2.1.2 Defining Intermediate
Variables

Intermediate variables are variables that are assigned an equation, but are not
assigned to a PIN or NODE. These are used to define equations that are used by
many variables or to provide an easier understanding of the design.

2.1.3 Using Indexed
Variables

Variable names that end in a decimal number from 0 to 31 are referred to as indexed
variables. They can be used to represent a group of address lines, data lines, or other
sequentially numbered items. When indexed variables are used in bit field operations
the variable with index number 0 is always the lowest order bit

Table 2-1. Using Number Bases

Number Base Decimal Value

‘b’0 Binary 0

‘B’1101 Binary 13

‘O’663 Octal 435

‘D’92 Decimal 92
WinCUPL User’s Manual 2-1

Designing with the CUPL Language
2.1.4 Using Number Bases All operations involving numbers in the CUPL compiler are done with 32-bit accuracy.
Therefore, the numbers may have a value from 0 to 232-1. A number may be repre-
sented in any one of the four common bases: binary, octal, decimal, or hexadecimal.
The default base for all numbers used in the source file is hexadecimal, except for
device pin numbers and indexed variables, which are always decimal. Binary, octal,
and hexadecimal numbers can have don’t care (“X”) values intermixed with numerical
values.

2.1.5 Using List Notation A list is a shorthand method of defining groups of variables. It is commonly used in pin
and node declarations, bit field declarations, logic equations, and set operations.
Square brackets are used to delimit items in the list.

Figure 2-1. Using The FIELD Statement
FIELD ADDRESS = [A7, A6, A5, A4, A3, A2, A1, A0];

FIELD DATA = [D7..D0];

FIELD Mode = [Up, Down, Hold];

2.1.6 Using Bit Fields A bit field declaration assigns a single variable name to a group of bits. After making a
bit field assignment using the FIELD keyword, the name can be used in an expression;
the operation specified in the expression is applied to each bit in the group. When a
FIELD statement is used, the compiler generates a single 32-bit field internally. This is
used to represent the variables in the bit field. Each bit represents one member of the
bit field. The bit number which represents a member of a bit field is the same as the
index number if indexed variables are used. This means that A0s will always occupy bit
0 in the bit field. This is mainly used for defining and manipulating address and data
buses.

2.2 Usage of the
Language Syntax

This section will discuss the logic and arithmetic operators and functions that are
needed to create a Boolean equation design.

2.2.1 Using Logical
Operators

Four standard logical operators are available for use: NOT, AND, OR, and XOR. The
following table lists the operators and their order of precedence, from highest to lowest.

Table 2-2. Logical Operators

2.2.2 Using Arithmetic
Operators And
Functions

Six standard arithmetic operators are available for use in $repeat and $macro com-
mands. The following table lists these operators and their order of precedence, from
highest to lowest.

‘h’BA Hexadecimal 186

‘O’[300..477] Octal (range) 192..314

‘H’7FXX Hexadecimal (range) 32512..32767

Number Base Decimal Value

Operator Examples Description Precedence

! !A NOT 1

& A & B AND 2

A # B OR 3

$ A $ B XOR 4
2-2 WinCUPL User’s Manual

Designing with the CUPL Language
Table 2-3. Arithmetic Operators

One arithmetic function is available to use in arithmetic expressions being used in
$repeat and $macro commands. The following table shows the arithmetic function and
its bases.

Table 2-4. Arithmetic Function and Bases

The LOG function returns an integer value. For example:

LOG2(32) = 5 <==> 2**5 = 32

LOG2(33) = ceil(5.0444) = 6 <==> 2**6 = 64

Ceil(x) returns the smallest integer not less than x.

2.2.3 Using Variable
Extensions

Extensions can be added to variable names to indicate specific functions associated
with the major nodes inside a programmable device, including such capabilities as flip-
flop description and programmable tri-state enables. The compiler checks the usage of
the extension to determine whether it is valid for the specified device and whether its
usage conflicts with some other extension used. CUPL uses these extensions to con-
figure the macrocells within a device. This way the designer does not have to know
what fuses control what in the macrocells. To know what extensions are available for a
particular device, use CBLD with the -e flag. A complete list of CUPL extensions can
be found in the CUPL PLD/FPGA Language Compiler manual in the Extensions sec-
tion of the CUPL Language chapter.

Operator Examples Description Precedence

** 2**3 Exponentiation 1

* 2*I Multiplication 2

/ 4/2 Division 2

% 9%8 Modulus 2

+ 2+4 Addition 3

- 4-I Subtraction 3

Function Base

LOG2 Binary

LOG8 Octal

LOG16 Hexadecimal

LOG Decimal
WinCUPL User’s Manual 2-3

Designing with the CUPL Language
Table 2-5. Atmel PLD/CPLD’s Variable Extensions

Extension Side Used Description

.AP L Asynchronous preset of flip-flop

.AR L Asynchronous reset of flip-flop

.CE L CE input of enabled D-CE type flip-flop

.CK L Programmable clock of flip-flop

.CKMUX L Clock multiplexer selection

.D L D input of D-type flip-flop

.DFB R D registered feedback path selection

.DQ R Q output of D-type flip-flop

.INT R Internal feedback path for registered macrocell

.IO R Pin feedback path selection

.J L J input of JK-type output flip-flop

.K L K input of JK-type output flip-flop

.L L D input of transparent latch

.LE L Programmable latch enable

.LQ R Q output of transparent input latch

.OE L Programmable output enable

.R L R input of SR-type output flip-flop

.S L S input of SR-type output flip-flop

.SP L Synchronous preset of flip-flop

.T L T input of toggle output flip-flop

.TFB R T registered feedback path selection
2-4 WinCUPL User’s Manual

Designing with the CUPL Language
Figure 2-2. Circuit Illustrating Extensions

Figure 2-2 shows the use of extensions. Note that this figure does not represent an
actual circuit, but shoes how to use extensions to write equations for different functions
in a circuit.

.AP Extension
The .AP extension is used to set the Asynchronous Preset of a register to an expres-
sion. For example. the equation "Y.AP = A&B;" causes the register to be asynchro-
nously preset when A and B are logically true. This feature is supported on the Atmel
ATF1500 family of devices.

FUSE
ARRAY

OUT_VAR.D

OUT_VAR.SP

OUT_VAR.OE

OUT_VAR.CK

OUT_VAR.AR

OUT_VAR (default feedback)

OUT_VAR.IO (alternate feedback)

D Q

Q
AR

SP

OUT_VAR.D = IN_VAR1 & OUT_VAR
!IN_VAR2 & IN_VAR3.DQ

!IN_VAR1 & OUT_VAR.IO

D Q
OUT_VAR

IN_VAR1

IN_VAR2

IN_VAR3

IN_VAR3.DQ

n

REGISTER

ARRAY

Y.AP

Y

WinCUPL User’s Manual 2-5

Designing with the CUPL Language
.AR Extension
The .AR extension is used to define the expression for Asynchronous Reset for a reg-
ister. This is used in devices that have one or more product terms connected to the
Asynchronous reset of the register. Devices which have a pin-controlled reset inputs,
such as the Atmel ATF1500 family also use this suffix.

.CE Extension
The .CE extension is used for D-type registers which have a clock enable input (D-CE
registers). It serves to specify the input to the Clock enable term of the register. In
devices that have D-CE registers such as the ATV2500B and the ATF1500 family, the
CE terms if not used must be set to binary 1, so that the registers behave as D regis-
ters. Normally, the CUPL compiler or Atmel ATF1500 family fitter will automatically do
this for you.

.CK Extension
The .CK extension is used to select a product term driven clock. Some devices have
the capability to connect the clock for a register to one or more pins or to a product
term. The .CK extension will select the product term. Use this suffix to connect the
clock for a register to the dedicated clock pin for any Atmel device that has this feature
except the ATV750B (refer to .CKMUX Extension).

REGISTER
ARRAY

Y.AR

Y

D-CE
REGISTER

ARRAY

Y.D

Y.CE

D

CE

Y

REGISTER
ARRAY

Y.CK

Y

2-6 WinCUPL User’s Manual

Designing with the CUPL Language
.CKMUX Extension
The .CKMUX extension is used to connect the pin clock to the register. This extension
is used on the Atmel ATV750B device. Using this extension can reduce the number of
product needed to implement the design into the Atmel device, and can increase the
AC timing performance of the design. Other Atmel Devices such as the ATV2500/B
and ATF1500 family also have dedicated clock pins, but they are not specified with the
.CKMUX extension. They use the .CK extension instead.

.D Extension
The .D extension is used to specify the D input to a D-type register. This options
causes the compiler to configure the macrocells in the Atmel PLD device to D-type reg-
isters. For Atmel PLD’s such as the ATF16V8B/20V8B/22V10B, ATV750/B and
ATV2500/B the .D extension must be used for registered logic. Otherwise, CUPL will
generate an error.

.DFB Extension
The .DFB extension is used when the macrocell on an Atmel device is configured for a
combinatorial output but the D register still remains connected to the output. This con-
figuration is supported on the ATV750/B and ATV2500/B devices. The .DFB allows the
registered representation of the combinatorial output to be fedback internally into the
Atmel Device. If you are interested in using this feature please contact Atmel PLD
Applications.

REGISTER
ARRAY

Y.CKMUX

Y

CLK

D
REGISTER

ARRAY

Y.D Y

D
REGISTER

ARRAY

Y.DFB

Y

WinCUPL User’s Manual 2-7

Designing with the CUPL Language
.DQ Extension
The .DQ extension is used to specify an input D register. Use of the .DQ extension
actually configures the input as registered. The .DQ extension is not used to specify Q
output from an output D register. This feature is available on the ATF1500 family of
device with 128 or greater macrocells. If you are interested in using this feature please
contact Atmel PLD Applications.

.INT Extension
The .INT extension is used for selecting an internal feedback path. This could be used
to specify the buried combinatorial feedback path for either a registered or combinato-
rial output. This feature is available for the ATF1500 family of devices with 128 or
greater macrocells. If you are interested in using this feature contact Atmel PLD appli-
cations.

D
REGISTER

ARRAY

A.DQ
A

REGISTER

ARRAY

Z.IO

Z.INT

Y.INT

Y

Z

Z

Y

2-8 WinCUPL User’s Manual

Designing with the CUPL Language
.IO Extension
The .IO extension is used to select pin feedback when the macrocell. This is useful,
when a design requires using an I/O pin an input and also requires buried logic to be
used within the same macrocell. It is also useful for implementing bi-directional outputs
in CUPL. For examples on how implement bi-directional I/O in CUPL refer to the Tips
for Using Test Vectors Application Note in the Atmel Configurable Logic databook, or
contact Atmel PLD applications.

.J and .K Extensions
The .J and .K extensions are used to specify J and K inputs to a J-K register. Logic
equations using these extensions can written and the REGISTER SELECT keyword
when the D or T-type target register is specified. This keyword is supported in CUPL
versions 4.6 and greater.

.L Extension
The .L extension is used to specify input into a latch. This extension is required to use
the level-triggered latch feature available on the ATF1500 family of devices. The use of
the .L extension causes the compiler to configure the macrocell as a latched output.

REGISTER
ARRAY

Y

Y.IO

Y

J-K
REGISTER

ARRAY

Y.J

Y.K

J

K

Y

LATCH

ARRAY

Y.L YL
WinCUPL User’s Manual 2-9

Designing with the CUPL Language
.LE
The .LE extension is used to specify the latch enable equation for a latch. It is required
for designs using the level-triggered latch feature available on the ATF1500 family of
devices. The .LE extension causes a product term to be connected to the latch enable.

.LQ Extension
The .LQ extension is used to specify an input latch. Use of the .LQ extension actually
configures the input as latched. The .LQ extension is not used to specify Q output from
a output latch. This feature is available on the ATF1500 family of devices with 128 or
more macrocells. If you are interested in using this feature contact Atmel PLD applica-
tions.

.OE Extension
The .OE extension is used to specify a product term driven output enable signal. It is
required for using bi-directional I/O and the individually programmable output-enable
product terms available on Atmel ATV750/B, ATV2500/B and ATF1500 family of
devices. Atmel Devices which have a pin-controlled OE inputs, such as the ATF1500
family also use this suffix.

L-LE
LATCH

ARRAY

Y.L

Y.LE

L

LE

Y

L
LATCH

ARRAY

A.LQ
A

MACRO
CELL

ARRAY

Y.OE

Y

2-10 WinCUPL User’s Manual

Designing with the CUPL Language
.S and .R Extensions
The .R and .S extensions are used to specify R (reset) and S (set) inputs to a SR reg-
ister. Logic equations for the ATF1500 family can be written using these extensions if
the REGISTER SELECT keyword is used and a D or T-type target register is specified.
This keyword is supported in CUPL versions 4.6 and greater.

.SP Extension
The .SP extension is used to set the Synchronous Preset of a register to an expres-
sion. For example. the equation:

Y.SP = A & B ; /* A and B are inputs */

causes the output Y to be preset synchronous with the local clock used in the macro-
cell when inputs A and B are true. This feature is supported on Atmel ATF22V10B,
ATV750/B and ATV2500/B devices which share Synchronous preset product terms.

.T Extension
The .T Extension specifies the T input for a T register. The use of the T extension
causes the compiler to configure the macrocell as a T-type register. This feature is sup-
ported on the Atmel ATV750B/2500B and ATF1500 family of devices.

S-R
REGISTER

ARRAY

Y.S

Y.R

S

R

Y

REGISTER

ARRAY

Y.SP

Y

T
REGISTER

ARRAY

Y.T Y
WinCUPL User’s Manual 2-11

Designing with the CUPL Language
.TFB Extension
The .TFB extension is used when the macrocell on an Atmel device is configured for a
combinatorial output but the T register still remains connected to the output. This con-
figuration is supported on the ATV750B and ATV2500B devices. The .TFB allows the
registered representation of the combinatorial output to be fedback internally into the
Atmel Device. If you are interested in using this feature, please contact Atmel PLD
Applications.

2.2.4 Defining Logic
Equations

Logic equations are the building clocks of the CUPL language. The form for logic equa-
tions is as follows:

[!] var [.ext] = exp;

where:

var is a single variable or a list of indexed or non-indexed variables defined accord-
ing to the rules for list notation. When a variable list is used, the expression is
assigned to each variable in the list

.ext is an option variable extension to assign a function to the major nodes inside
programmable Devices.

exp is an expression; that is, a combination of variables and operators.

= is the assignment operator; it assigns the value of an expression to a variable or
set of variables.

 ! is the complement operator.

In standard logic equations, normally only one expression is assigned to a variable.
The APPEND statement enables multiple expressions to be assigned to a single vari-
able. The APPENDed logic equation is logically ORed to the original equation for that
variable. The format for using the APPEND statement is identical to defining a logic
equation except the keyword APPEND appears before the logic equation begins.

Place logic equations in the “Logic Equation” section of the source file provided by the
template file.

2.2.5 Using Set Operations All operations that are performed on a single bit of information, for example, an input
pin, a register, or an output pin, may be applied to multiple bits of information grouped
into sets. Set operations can be performed between a set and a variable or expression,
or between two sets.

The result of an operation between a set and a single variable (or expression) is a new
set in which the operation is performed between each element of the set and the vari-
able (or expression).

When an operation is performed on two sets, the sets must be the same size (that is,
contain the same number of elements). The result of an operation between two sets is
a new set in which the operation is performed between elements of each set.

When numbers are used in set operations, they are treated as sets of binary digits. A
single octal number represents a set of three binary digits, and a single decimal or
hexadecimal number represents a set of four binary digits.

T
REGISTER

ARRAY

Y.TFB

Y

2-12 WinCUPL User’s Manual

Designing with the CUPL Language
2.2.6 Using Equality
Operations

Unlike other set operations, the equality operation evaluates to a single Boolean
expression. It checks for bit equality between a set of variables and a constant. The bit
positions of the constant number are checked against the corresponding positions in
the set. Where the bit position is a binary 1, The set element is unchanged. Where the
bit position is a binary 0, the set element is negated. Where the bit position is a binary
X, the set element is removed. The resulting elements are then ANDed together to cre-
ate a single expression.

The equality operator can also be used with a set of variables that are to be operated
upon identically. For example, the following three expressions:

[A3, A2, A1, A0]:&

[B3..B0]:#

[C3, C2, C1, C0]:$

are equivalent respectively to:

A3 & A2 & A1 & A0

B3 # B2 # B1 # B0

C3 $ C2 $ C1 $ C0

2.2.7 Using Range
Operations

The range operation is similar to the equality operation except that the constant field is
a range of values instead of a single value. The check for bit equality is made for each
constant value in the range.

First, define the address bus, as follows:

FIELD address = [A3..A0];

Then write the RANGE equation:

select = address:[C..F];

This is equivalent to the following equation:

select = address:C # address:D # address:E # address:F;

2.3 Advanced
Language Syntax

This section describes the advanced CUPL language syntax. It explains how to use
truth tables, state machines, condition statements, and user-defined functions to cre-
ate a PLD design.

2.3.1 Defining Truth Tables Sometimes the clearest way to express logic descriptions is in tables of information.
CUPL provides the TABLE keyword to create tables of information. First, define rele-
vant input and output variable lists, and then specify one-to-one assignments between
decoded values of the input and output variable lists. Don’t-care values are supported
for the input decode value, but not for the output decoded value.

A list of input values can be specified to make multiple assignments in a single state-
ment. The following block describes a simple hex-to-BCD code converter:

FIELD input = [in3..0];

FIELD output = [out3..0];

TABLE input => output {

0=> 00; 1=>01; 2=>02; 3=>03;

4=>04; 5=>05; 6=>06; 7=>07;

8=>08; 9=>09; A=>10; B=>11;

C=>12; D=>13; E=>14; F=>15;

}

WinCUPL User’s Manual 2-13

Designing with the CUPL Language
2.3.2 Defining State
Machines

A state machine, according to AMD/MMI, is “a digital device which traverses through a
predetermined sequence of states in an orderly fashion.” A synchronous state machine
is a logic circuit with flip-flops. Because its output can be fed back to its own or some
other flip-flop’s input, a flip-flop’s input value may depend on both its own output and
that of other flip-flops; consequently, its final output value depends on its own previous
values, as well as those of other flip-flops.

The CUPL state-machine model, as shown in Figure 2-3, uses six components: inputs,
combinatorial logic, storage registers, state bits, registered outputs, and non-registered
outputs.

Figure 2-3. State Machine Model

Inputs - are signals entering the device that originate in some other device.

Combinatorial Logic - is any combination of logic gates (usually AND-OR) that pro-
duces an output signal that is valid Tpd (propagation delay time) nsec after any of the
signals that drive these gates changes. Tpd is the delay between the initiation of an
input or feedback event and the occurrence of a non-registered output.

State Bits - are storage register outputs that are fed back to drive the combinatorial
logic. They contain the present-state information.

Storage Registers - are any flip-flop elements that receive their inputs from the state
machine’s combinatorial logic. Some registers are used for state bits: others are used
for registered outputs. The registered output is valid Tco (clock to out time) nsec after
the clock pulse occurs. Tco is the time delay between the initiation of a clock signal and
the occurrence of a valid flip-flop output.

To implement a state machine, CUPL supplies a syntax that allows the describing of
any function in the state machine. The SEQUENCE keyword identifies the outputs of a
state machine and is followed by statements that define the function of the state
machine. The SEQUENCE keyword causes the storage registers and registered out-
put types generated to be the default type for the target device. Along with the
SEQUENCE keyword are the SEQUENCED, SEQUENCEJK, SEQUENCERS, and
SEQUENCET keywords. Respectively, they force the state registers and registered
outputs to be generated as D, J-K, S-R, and T-type flip-flops. The format for the
SEQUENCE syntax is as follows:

SEQUENCE state_var_list {

PRESENT state_n0

IF (condition1)NEXT state_n1;

IF (condition2) NEXT state_n2 OUT out_n0;

DEFAULT NEXT state_n0;

PRESENT state_n1

NEXT state_n2;

.

.

STORAGE

REGISTERS

COMBINATORIAL

LOGIC

NON-REGISTERED OUTPUTSINPUTS

REGISTERED OUTPUTS

STATE BITS
2-14 WinCUPL User’s Manual

Designing with the CUPL Language
.

PRESENT state_nn statements;

}

where

state_var_list is a list of the state bit variables used in the state machine block. The
variable list can be represented by a field variable.

state_n is the state number and is a decode value of the state_variable_list and must
be unique for each present statement.

statements are any of the conditional, next, or output statements described in the fol-
lowing subsection.

2.3.3 Defining Multiple
State Machines

The CUPL syntax allows for more than one state machine to be defined within the
same PLD design. When multiple state machines are defined, occasionally the
designer would like to have the state machines communicate with each other. That is,
when one state machine reaches a certain state another state machine may begin.
There are two methods of accomplishing state machine communication: using set
operations on the state bits or defining a “global” register that can be accessed by both
state machines.

In one state machine a conditional statement can contain another state machine’s
name followed by a state number or range of state numbers. The conditional statement
will become TRUE when the other state machine reaches that particular state or
states. The same case is true when using a register that is accessed by multiple state
machines. However, this method requires the use one of the devices output or buried
registers. Depending on the situation, the global register could also be combinatorial
which may make a difference as to when the state machine receives the information
from another state machine.

2.3.4 Using Condition
Statement

The CONDITION syntax provides a higher-level approach to specifying logic functions
than does writing standard Boolean logic equations for combinatorial logic. The format
is as follows:

CONDITION {

IF expr0 OUT var;

.

.

IF exprn OUT var;

DEFAULT OUT var;

}

The CONDITION syntax is equivalent to the asynchronous conditional output state-
ments of the state machine syntax, except that there is no reference to any particular
state. The variable is logically asserted whenever the expression or DEFAULT condi-
tion is met.

2.3.5 Defining A Function The FUNCTION keyword permits the creating of personal keywords by encapsulating
some logic as a function and giving it a name. This name can then be used in a logic
equation to represent the function. The format for user-defined functions is a follows:

FUNCTION name ([Parameter0 ,...,Parametern])

{ body }

The statements in the body may assign an expression to the function, or may be unre-
lated equations.
WinCUPL User’s Manual 2-15

Designing with the CUPL Language
When using optional parameters, the number of parameters in the function definition
and in the reference must be identical. The parameters defined in the body of the func-
tion are substituted for the parameters referenced in the logic equation. The function
invocation variable is assigned an expression according to the body of the function. If
no assignment is made in the body statements, the function invocation variable is
assigned the value of ‘h’0.

2.3.6 MIN Declaration
Statements

The MIN declaration permits specifying different levels for different outputs in the same
design, such as no reduction for outputs requiring redundant or contains product terms
(to avoid asynchronous hazard conditions), and maximum reduction for a state
machine application.

The MIN declaration statement overrides, for specified variables, the minimization level
specified on the command line when running CUPL. The format is as follows:

MIN var [.ext] = level ;

MIN is a keyword to override the command line minimization level.

var is a single variable declared in the file or a list of variables grouped using the
list notation; that is,

MIN [var, var, ... var] = level

.ext is an optional extension that identifies the function of the variable

level is an integer between 0 and 4.

; is a semicolon to mark the end of the statement.

The levels 0 to 4 correspond to the minimization levels available: None, Quick, Quine
McClusky, Presto, Espresso.

The following are examples of valid MIN declarations.

MIN async_out = 0; /* no reduction */

MIN [outa, outb] = 1; /* Quine McClusky reduction */

MIN count.d = 4; /* Espresso reduction */

Note that the last declaration in the example above uses the .D extension to specify
that the registered output variable is the one to be reduced.
2-16 WinCUPL User’s Manual

Section 3

Using the CUPL Compiler

This chapter briefly describes CUPL source file operations and the types of output that
CUPL creates under the CUPL for Windows environment.

3.1 About The
Compiler

The CUPL compiler is a program that takes a text file consisting of high level directives
and commands and creates files consisting of more primitive information. This informa-
tion is either used by a device programmer to program a logic function into a program-
mable logic device or by a simulator to simulate the design.

To start CUPL, double click on the CUPL icon in the program manager for the Win-
dows 3.X operating system, or click on Start, <Programs>, <CUPL>, CUPL in Windows
95.

Figure 3-1. CUPL’s Main Screen
WinCUPL User’s Manual 3-1

Using the CUPL Compiler
3.1.1 CUPL’s Menu File Menu - Controls and features relating to general program manipulation.

New - Opens a template PLD file for a new design.

Open - Opens an existing file for modification.

Save - Saves the current file being modified.

Save As - Save the current file as a new file with a different name.

Print - Print the currently selected document.

Exit - Exit the program.

Edit Menu - Controls and utilities for editing files.

Cut - Moves the selected text to the clipboard.

Copy - Copies the selected text to the clipboard.

Paste - Paste text from the clipboard to the current cursor location.

Delete - Delete the selected text.

Copy Message - Copy the contents of the message window to the clipboard.

Search - Search for a text string in the body of text.

Line To - Advance to the line number selected.

Option Menu - Menu for selecting options related to CUPL’s performance and compi-
lation.

Figure 3-2. CUPL’s Compiler Options

Compiler Options - Options directly affecting CUPL’s compiler in minimization, optimi-
zation, and selecting output file formats.

Logic Minimization - Select the level of minimization desired on the entire design.
Please note that pin by pin minimization is available. See Section 2.3.6–MIN Dec-
laration Statement for more information on CUPL’s minimization techniques.

Optimization - Select the optimizations desired on the entire design. Please note
that pin by pin optimization is also available. See Section 2.3.6–MIN Declaration
Statement for more information on CUPL’s optimization techniques.
3-2 WinCUPL User’s Manual

Using the CUPL Compiler
Figure 3-3. Output Format Files

Output file - Select the output files needed for the design.

Download - Select the file type to download to the programmer.

DOC File Options - Select the options for the .DOC file.

Output - Several output formats are available from the compilation.

Figure 3-4. Simulator Options

Simulator Options - Options related to simulation of the .PLD file.

Listing File - Create a simulation output file (.SO).

Append Vectors - Add test vectors to a JEDEC file.

Display Results - Display the waveform outputs graphically.
WinCUPL User’s Manual 3-3

Using the CUPL Compiler
Figure 3-5. Device Selection Dialog Box

Select Device - Allows the user to select a device to target. Using this option is not
necessary and will override the device selection in the .PLD file.

To select the device, click on the general type of PLD it is. Next select DIP or PLCC
nmeumonic and specific type of device. Note that if the device type is only available in
PLCC it only appears in the DIP section.

Select Library - Allows the user to choose a user supplied library.

Select Files - Allows the user to specify which file should be compiler.

Preferences - User defined preferences affecting environment

Run Menu - Compile, simulate, and analysis.

Device Specific Compile - Compile the currently selected design for the specific
device selected.

Device Specific Simulate - Simulate the currently selected design for the specific
device selected.

Utilities Menu - Additional useful utilities.
3-4 WinCUPL User’s Manual

Using the CUPL Compiler
Figure 3-6. Device Library

Device Library - utility for manipulating CUPL’s device library.

Options - Allows the user to specify what action is to be taken.

Short Listing - Outputs to the message box a wide list of all the devices
nmeumonics contained in the selected device library.
Long Listing - Outputs to the message box a list of all the device mnemonics
in the selected library along with revision information, number of pins, number
of fuses, and total number of available product terms in the device.
List extensions - Lists the extensions of the selected device, or if no device is
selected it lists extensions of all devices, from the library selected to the
message window.

Build User Library - Build a user library from an existing library.

Select Library - Allows the user to select a device library.
WinCUPL User’s Manual 3-5

Using the CUPL Compiler
Select Device - Allows the user to select a device (see figure 3-6).

Select Build - Select a user build file.

Calculator - Calls Windows calculator.

File Manager - Calls Windows File Manager.

DOS Prompt - Calls Windows DOS Prompt.

Project - CUPL’s project option.

Load - Loads a project file for a .PLD file.

Save - Saves a project file which includes compiler and simulator settings.

Windows - Manipulation of multiple document interface windows.

Cascade - Cascade open windows.

Tile - Tile all open windows.

Arrange Icons - Arrange the icons of minimized windows in the CUPL window.

Help - On-line help files and general information about CUPL.

Index - Open the help file for CUPL for Windows.

Using Help - Information on how to use the help menu.

About - Opens the about CUPL dialog box. Contains version information.

3.2 Output File
Format
Descriptions

A JEDEC-compatible ASCII download file (filename.JED) for input to a device pro-
grammer.

An absolute file (filename.ABS) for use by CSIM, the CUPL logic simulation pro-
gram.

An error listing file (filename.LST) that lists errors in the original source file.

A documentation file (filename.DOC) that contains expanded logic equations, a vari-
able symbol table, product term utilization, and fusemap information.

A Open PLA file (filename.PLA) for use by various back end fitters.
3-6 WinCUPL User’s Manual

Section 4

CUPL Tutorial

This section covers an example of how to use CUPL for Windows to compile a simple
program and basically show the general flow of a design using CUPL.

4.1 Tutorial for Gates Start CUPL by double clicking on the CUPL icon in Windows 3.X, or Windows 95 or
WinNT click on Start, <programs>, <CUPL>, CUPL.

Under the file menu click on open.

Figure 4-1. Open Dialog Box

Select gates.pld and click OK. The file gates.pld should appear in the CUPL windows.
Take a second to look over the file. This file illustrates the use of CUPL’s basic combi-
natorial logic.
WinCUPL User’s Manual 4-1

CUPL Tutorial
Figure 4-2. GATES.PLD Compiler Options

Click on <Options> and <Compiler Options> to bring up the compiler options dialog
box. Click the simulate box and then click on <Output File>. Select JEDEC and abso-
lute to produce a JEDEC file with test vectors. It is also useful to select Expanded
Macro and listing files to get information on the compilation.

Once the compiler options are set, the file is ready to be compiled. Under the Compile
menu, select Device Specific Compile, or press F9. If the file has been modified, it will
need to be saved before a compile is performed. This function will compile the file, cre-
ate the JEDEC file, simulate, and add the test vectors to the program.
4-2 WinCUPL User’s Manual

CUPL Tutorial
Figure 4-3. Compile Status

After the compilation is completed, there will be several files created. The file gates.jed
is used to download to a programmer in order to program the devices and do the func-
tional testing. The file gates.so is the simulation output file, and displays the logic simu-
lation CUPL created. The Expanded Macro file, gates.doc, is the logic, after minimiza-
tion, the CUPL implemented into the device. The last file created is the Listing file,
gates.lst, and is used to display errors in the source file.

4.2 Tutorial for
COUNT10

This tutorial covers advance CUPL syntax of State Machines and Conditional State-
ments.

Open up the file COUNT10.PLD (in C:\WINCUPL\EXAMPLES directory) and look it
over. The file uses the CUPL state machine syntax and conditional statements to dem-
onstrate a four bit up/down decade counter with synchronous clear capability. The up,
down, and clear statements control the direction and reset of the counter. An asynchro-
nous ripple carry signal is generated when the counter reaches terminal count.

Click on <Options> and <Compiler Options> to bring up the compiler options dialog
box. Click on <Output File> and select <JEDEC>, <absolute>, <simulation>,
<Expanded Macro> and <list> options. Click on <Compile> and <Device Specific Com-
pile> now to compile the file and generate the information files. Then open up the
COUNT10.DOC file.

Figure 4-4. COUNT10.DOC
**

 Count10

**

CUPL(WM) 4.7a Serial# MW-67999999

Device g16v8ms Library DLIB-h-36-11

Created Mon May 06 10:19:28 1996

Name Count10

Partno CA0018

Revision 02

Date 12/19/89

Designer Kahl

Company Logical Devices, Inc.

Assembly None

Location None
WinCUPL User’s Manual 4-3

CUPL Tutorial
==
 Expanded Product Terms
==

Q0.d =>
 !Q0 & !Q1 & !Q2 & Q3 & !clr
 # !Q0 & !Q3 & !clr

Q1.d =>
 !Q0 & !Q1 & !Q2 & Q3 & !clr & dir
 # Q0 & !Q1 & !Q3 & !clr & !dir
 # !Q0 & Q1 & !Q3 & !clr & !dir
 # Q0 & Q1 & !Q3 & !clr & dir
 # !Q0 & !Q1 & Q2 & !Q3 & !clr & dir

Q2.d =>
 !Q0 & !Q1 & !Q2 & Q3 & !clr & dir
 # Q0 & Q1 & !Q2 & !Q3 & !clr & !dir
 # !Q1 & Q2 & !Q3 & !clr & !dir
 # Q0 & Q2 & !Q3 & !clr & dir
 # !Q0 & Q1 & Q2 & !Q3 & !clr

Q3.d =>
 Q0 & !Q1 & !Q2 & Q3 & !clr & dir
 # !Q0 & !Q1 & !Q2 & !Q3 & !clr & dir
 # Q0 & Q1 & Q2 & !Q3 & !clr & !dir
 # !Q0 & !Q1 & !Q2 & Q3 & !clr & !dir

carry =>
 !Q0 & !Q1 & !Q2 & !Q3 & !clr & dir
 # Q0 & !Q1 & !Q2 & Q3 & !clr & !dir

clear =>
 clr

count =>
 Q3 , Q2 , Q1 , Q0

down =>
 !clr & dir

mode =>
 clr , dir

up =>
 !clr & !dir

carry.oe =>
 1

This is an example of how CUPL translates a state machine into simple Boolean logic.
The CUPL state machine syntax is a very useful tool in designing counters, processes,
or any sequence of events.
4-4 WinCUPL User’s Manual

CUPL Tutorial
4.3 Tutorial for
SQUARE.PLD

To start this example, click on <File> and <New>. This brings up a template file for
modification. Start by filling out all of the header information. It is generally good prac-
tice to use have the Name field the same as the file name.

After the header information is supplied the pin declarations need to be made. For this
design we will need 4 inputs and 8 outputs. A 16V8 in simple mode will accommodate
this. Declare 4 input pins as the input bus and all of the I/O pins available as the output
bus. Please note that you cannot name a signal OUT because it is a CUPL reserved
word.

The next step is to define the Field statements for the signals. To do this look at the
listing of the PLD file on the next page. Having the fields set up we can now define the
Table. A general direct match is used to do this with the equating symbol (=>). CUPL
also supports a repeat state that allows the user to quickly go through values without
computing the value manually.

Figure 4-5. SQUARE.PLD file
Name SQUARE;
Partno XX;
Date 05/01/96;
Revision 01;
Designer Chip Willman;
Company Logical Devices Inc.;
Assembly None;
Location U1;
Device G16V8;

/**/
/* This Design Example is an example of a lookup table to */
/* produce the square of a number coming in. */
/* */
/**/
/* Allowable Target Device Types: */
/**/

/** Inputs **/
Pin [2..5] = [I0..2] ; /* Input bus line 4 bits */

/** Outputs **/
Pin [12..19] = [Ot0..7] ; /* Output bus line 8 bits */

/** Declarations and Intermediate Variable Definitions **/
Field input = [I3..0];
Field output = [Ot7..0];

/** Logic Equations **/
Table input=>output {
‘d’00 => ‘d’000;
‘d’01 => ‘d’001;
‘d’02 => ‘d’004;

$REPEAT A = [3..15]
‘d’{A} => ‘d’{A*A};

$REPEND
}

WinCUPL User’s Manual 4-5

CUPL Tutorial
Included with this software are several other examples with useful demonstrations of
CUPL syntax. The file EXAMPLES.TXT gives a description of most of the examples
included in the package.
4-6 WinCUPL User’s Manual

Section 5

CUPL Software Features

This chapter briefly describes several CUPL software packages supplied by Logical
Devices. Please contact Logical Devices for more information. If you have questions
about Atmel-CUPL or Atmel-WINCUPL please contact Atmel PLD applications.

5.1 CUPL - PALexpert PALexpert contains the features mentioned in this package and supports 75 popular
PAL, GAL and PROM architectures (approximately 1500 devices). This low cost CAE
tool allows you to discover the benefits of designing with PLDs.

5.2 CUPL - PLDmaster PLDmaster supports over 250 PAL, GAL, FPLA and PROM architectures which
equates to over 3000 devices. With the more complex devices, it is possible for the
designer to impliment larger designs into a single device

5.3 CUPL - Total
Designer

Total Designer is the complete programmable logic design system including support
most all industry devices including Complex PLDs and FPGAs. These include other
competitor devices. Manufacturer specific place and route software and device fitters
may not be included. In addition, partition software is provided for creating multiple
PLD designs. Also SchemaQuik and ONCUPL are provided so that schematic entry
designs can be created and translated into CUPL source files. All the programmable
logic design software an engineer needs is in this package.

5.4 CUPL - Total
Designer VHDL

5.4.1 OPTION for Total
Designer

CUPL Total Designer VHDL transforms a VHDL design description into a Boolean
design description and CUPL source design file. During processing the CUPL Total
Designer VHDL program performs analysis, translation, and minimization. As an IEEE
standard, VHDL descriptions are portable to other synthesis and simulation tools.
VHDL allows the user to describe a design in any of three levels of abstraction: Struc-
tural (netlist like), data flow (like a PLD programming language), and behavioral (like a
programming language).
WinCUPL User’s Manual 5-1

CUPL Software Features
5.5 ONCUPL ONCUPL is a software tool that allows PLD designs to be done with schematic cap-
ture. A designer first draws the design with a schematic capture program. The sche-
matic design is the converted into a netlist using a netlist extractor provided with the
schematic capture program. ONCUPL then translate this netlist into a PLD file. This
PLD file can be compiled with CUPL to produce any of the output files that CUPL is
capable of producing.

ONCUPL is shipped with a library of symbols which can be used to implement the var-
ious macrocell architectures found in PLDs. Any design that will be processed by
ONCUPL must be done using only ONCUPL symbols since these are specially struc-
tured for PLDs/ This usually means that existing TTL devices connected at the board
level. Most often the design will have to be modified to some extent accommodate for
the difference.

5.6 Liaison Liaison - Logic Input Algorithm Interface for Symbolic Object Netlists - is a software
system for converting schematic netlists to CUPL PLD files. As a more sophisticated
translation tool than ONCUPL, LIAISON converts EDIF 2 0 0 netlists generated by
schematic capture tools into its own internal format and the proceeds to translate this
format into a PLD design file.

LIAISON automatically adjusts for differences in the target architecture by examining
the design and the desired target to determine if there is a match. It then proceeds to
implement the desired logic as closely as possible. LIAISON also adjusts for different
register types, resorting to emulation where necessary.

LIAISON provides sophisticated and flexible symbols called COMPLEX symbols.
These can be used to create customized symbols like a variety of TTL symbols.

5.7 PLPartition PLPartition is a logic synthesis tool that works with CUPL for producing designs that
span multiple PLDs. A design is created in CUPL using the device independent compi-
lation feature. The .DOC output from this process is read into PLPartition where the
designer then directs the software as to how to divide the logic and what devices to
choose. The designer will set partitioning criteria such as how many solutions to pro-
duce, the maximum number of devices the solution can use, the percentage of product
terms to use per output in each target device and several other optimization features.
PLPartition then produces a list of solutions that match the users specified criteria. The
designer can then choose one of these solutions and PLPartition will divide the logic in
that manner.

PLPartiton has several interesting features. It can do automatic product term splitting.
This means that if an equation cannot fit on a particular output Y then part of the equa-
tions placed on an unused output Y1 which is then fedback to the output Y where it is
combined with the other part of the equation. This can allow more complex logic to fit
into a device than may have been thought possible. The partitioning process can be
optimized for minimum pin usage or minimum product term usage. This can be used to
increase device usage efficiency by some simple analysis of the design.

PLPartition report file provides a mechanism for showing the designer how the logic
was placed and the efficiency of the fit. This report file can be read back in by PLParti-
tion in a future use of the same design so that pin placements can be retained if they
were unchanged. This can potentially save board rework by retaining pinouts.

5.8 How to Contact
Logical Devices

Logical Devices e-mail: logdev@henge.com

1221 South Clarkston St. Web: http://www.logicaldevices.com

Suite 200 Tel: (303) 722-6868

Denver, CO 80202 Fax: (303) 733-6868
5-2 WinCUPL User’s Manual

®

 Printed on recycled paper.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Atmel PLD Application Hotline
1-(408) 436-4333

Atmel PLD Application e-mail
pld@atmel.com

Literature Requests
www.atmel.com/literature

0737B–PLD–02/06

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Introduction to Programmable Logic
	1.1 What is Programmable Logic?
	1.1.1 ASICs
	1.1.2 Basic architecture of a user programmable device
	1.1.3 PROMs
	1.1.4 PALs
	1.1.5 GALs
	1.1.6 PLAs
	1.1.7 Complex PLDs
	1.1.8 FPGAs

	1.2 Device Technologies and Packaging
	1.2.1 Device Technologies
	1.2.2 Device Packaging

	1.3 Programming Logic Devices
	1.4 Functionally Testing Logic Devices

	Designing with the CUPL Language
	2.1 Declaration of Language Elements
	2.1.1 Pin/Node Definition
	2.1.2 Defining Intermediate Variables
	2.1.3 Using Indexed Variables
	2.1.4 Using Number Bases
	2.1.5 Using List Notation
	2.1.6 Using Bit Fields

	2.2 Usage of the Language Syntax
	2.2.1 Using Logical Operators
	2.2.2 Using Arithmetic Operators And Functions
	2.2.3 Using Variable Extensions
	2.2.4 Defining Logic Equations
	2.2.5 Using Set Operations
	2.2.6 Using Equality Operations
	2.2.7 Using Range Operations

	2.3 Advanced Language Syntax
	2.3.1 Defining Truth Tables
	2.3.2 Defining State Machines
	2.3.3 Defining Multiple State Machines
	2.3.4 Using Condition Statement
	2.3.5 Defining A Function
	2.3.6 MIN Declaration Statements

	Using the CUPL Compiler
	3.1 About The Compiler
	3.1.1 CUPL’s Menu

	3.2 Output File Format Descriptions

	CUPL Tutorial
	4.1 Tutorial for Gates
	4.2 Tutorial for COUNT10
	4.3 Tutorial for SQUARE.PLD

	CUPL Software Features
	5.1 CUPL - PALexpert
	5.2 CUPL - PLDmaster
	5.3 CUPL - Total Designer
	5.4 CUPL - Total Designer VHDL
	5.4.1 OPTION for Total Designer

	5.5 ONCUPL
	5.6 Liaison
	5.7 PLPartition
	5.8 How to Contact Logical Devices

